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Convex Quadratic Programming

min
x∈Rn

1

2
x>Qx + c>x s.t. Ax ≤ b, Cx = d

• Q ∈ Rn×n is a symmetric and positive semi-definite matrix

• A ∈ Rm×n, C ∈ Rk×n

• b ∈ Rm, d ∈ Rk , c ∈ Rn
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Towards the Robust Counterpart

Uncertain QP data

• QP data (Q,A,C , c, b, d) are uncertain

• In particular: contained in a given uncertainty set U

Uncertain convex QP{
min
x∈Rn

{
1

2
x>Qx + c>x : Ax ≤ b, Cx = d

}}
(Q,A,C ,c,b,d)∈U

• Family of optimization problems of the nominal type

• Abbreviation u := (Q,A,C , c, b, d)

Robust counterpart

min
x∈Rn

{
sup
u∈U

{
1

2
x>Qx + c>x : Ax ≤ b, Cx = d for all u ∈ U

}}
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Some Literature

The first paper and the standard textbook

• Soyster (OR, 1973): First paper on robust (linear) optimization

• Ben-Tal, El Ghaoui, Nemirovski (2009): Seminal textbook

Many extensions

• Bertsimas, Sim (2003, 2004), Sim (2004): Γ-robustness

• Fischetti, Monaci (2009): light robustness

• Ben-Tal, Goryashko, Guslitzer, Nemirovski (2004): adjustable robustness
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The Linear Complementarity Problem (LCP)

Given q ∈ Rn, M ∈ Rn×n, find a vector z that satisfies

z ≥ 0, Mz + q ≥ 0, z>(Mz + q) = 0

or show that no such vector exists.

Alternative notation for the LCP(q,M)

0 ≤ z ⊥ Mz + q ≥ 0
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Why Would Anyone Care?

The applications are extremely manifold!

• Matrix theory

• Optimality conditions of QPs

• The bimatrix game is an LCP

• Market equilibrium modeling

• Optimal stopping

• Contact mechanics

• Special case of variational inequalities

• . . .
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Example #1

The QP

min
x

c>x +
1

2
x>Qx s.t. x ≥ 0

with positive semi-definite Q is equivalent to the LCP(q,M).

• Simply write down its KKT conditions

• Can be generalized to QPs with arbitrary inequality constraints
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Example #2: Market Equilibrium Modeling

Standard micro-economic setting

Production/Generation

+ Demand (depending on market price)

+ Market clearing conditions

= Market equilibrium problem

= LCP (under suitable assumptions)
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Market Equilibrium Modeling (from Cottle, Pang, Stone 2009)

Production (modeled as an LP)

min
x∈Rn

c>x

s.t. Ax ≥ b [λ]

Bx ≥ r [π]

x ≥ 0

Demand

r = Dp + d

Equilibrating condition

p = π
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Market Equilibrium Modeling (from Cottle, Pang, Stone 2009)

Take the production KKTs and massage the terms . . .

0 ≤ x ⊥ c − A>λ− B>p ≥ 0

0 ≤ λ ⊥ −b + Ax ≥ 0

0 ≤ p ⊥ −Dp − d + Bx ≥ 0

This is the LCP(q,M) with

x =

x

λ

p

 , M =

0 −A> −B>

A 0 0

B 0 −D

 , q =

 c

−b
−d
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Why Robust LCPs?

Production

min
x∈Rn

c>x

s.t. Ax ≥ b

Bx ≥ r

x ≥ 0

Demand

r = Dp + d

Uncertainties are everywhere!

• Price sensitivity D, d

• Production data B (e.g., renewable power production)

• Cost data c (e.g., feed-in tariffs for renewables)
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The Stochastic Way

Consider the LCP’s gap function QP

min
x∈Rn

g(x) := x>(Mx + q)

s.t. x ∈ X := {x ∈ Rn : x ≥ 0, Mx + q ≥ 0}

No-Brainer: A point x ∈ Rn is a solution of the LCP if and only if it is global

minimizer of the gap function with objective function value 0.

Expected Gap Minimization Problem

min
“x∈X”

E(uM ,uq) [g(x ; uM , uq)]

with

g(x ; uM , uq) := x>(M(uM)x + q(uq)).

Some(!) articles: Chen, Fukushima (MOR 2005),

Lin, Fukushima (OMS 2006),

Chen, Zhang, Fukushima (Math. Prog. 2009),

Chen, Wets, Zhang (SIOPT 2012)
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The Robust LCP

• Consider LCP data M and q to be uncertain

• No assumptions on probability distributions

• M(uM) and q(uq) with uM ∈ UM and uq ∈ Uq
• UM , Uq are given (deterministic) uncertainty sets

• Example: q(uq) := q̄ + uq with nominal value q̄ and uq ∈ Uq

The robust LCP (= family of LCPs)

{0 ≤ x ⊥ M(uM)x + q(uq) ≥ 0}(uM ,uq)∈UM×Uq
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Robust Feasible Points and Robust Solutions

We call a point x strictly robust feasible if

x ≥ 0, M(uM)x + q(uq) ≥ 0

holds for all (uM , uq) ∈ UM × Uq.

The point is called a strictly robust LCP solution if it additionally satisfies

x>(M(uM)x + q(uq)) = 0 for all (uM , uq) ∈ UM × Uq.
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The Robust Gap Function Formulation

Robustifying the Gap Function QP

min
x∈X (uM ,uq)

sup
(uM ,uq)∈UM×Uq

g(x ; uM , uq)

with robust feasible set

X (uM , uq) := {x ∈ Rn : x ≥ 0, M(uM)x + q(uq) ≥ 0}

This is surprisingly new stuff . . .

• First paper by Wu, Han, Zhu in (2011)

• Latest paper (before our articles): Xie, Shanbhag (2014, 2016)

• Nothing in between!
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The Economist’s Problem

Our starting point was Xie, Shanbhag (SIOPT 2016).

Proposition

A vector x solves

0 ≤ x ⊥ M(uM)x + q(uq) ≥ 0 for all (uM , uq) ∈ UM × Uq

if and only if x is a solution of the robust gap function formulation with

optimal objective function value of zero.

Bad news

• This is almost never the case!

• “almost never” = only in trivial cases

This means (for instance):

If the LCP models a market equilibrium,

there is no “robust market equilibrium”.
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Remedies?

• Let’s mimic the robust optimization literature starting from 2003 on

• Thus: Consider less conservative notions of robustness

• Xie, Shanbhag (SIOPT 2016) “only” considered the strictly robust case,

which delivers the most conservative solutions of all robustness concepts

What we did:

• Γ-robust LCPs (à la Bertsimas, Sim (2003, 2004) and Sim (2004))

• Krebs, S. (OMS, 2020): `1 and `∞ norm uncertainties

• Krebs, Müller, S. (Preprint, 2019): ellipsoidal uncertainty sets

• Adjustable Robustness (à la Ben-Tal et al. (2004))

• Biefel, Rolfes, Liers, S. (Preprint, 2020)

• Applications in power market equilibrium models

• Kramer, Krebs, S. (Preprint, 2018)

• Çelebi, Krebs, S. (Energy Systems, 2020)
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Another Economist’s Problem

If existence of robust equilibria cannot be established . . .

What about approximate equilibria?

That is, we consider solutions of

min
x∈X (uM ,uq)

sup
(uM ,uq)∈UM×Uq

g(x ; uM , uq)

with strictly positive optimal objective function values.

Questions?

• Do these approximate equilibria exist?

• What about uniqueness?

The Optimizer’s Problem:

What about tractability?
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Uncertain LCP Vector q

• Consider

{0 ≤ x ⊥ Mx + q(u) ≥ 0}u∈U
• Given uncertainty set U ⊂ Rn

• Γ-version of the uncertainty set

UΓ := {u ∈ U : |{i ∈ [n] : ui 6= 0}| ≤ Γ}

• Robust gap function problem

min
x

sup
u∈UΓ

{
x>Mx + x>q(u) : x ≥ 0, Mx ≥ −q(u) for all u ∈ UΓ

}

26



Uncertain q . . . Bad News Again

Robust gap function problem

min
x

sup
u∈UΓ

{
x>Mx + x>q(u) : x ≥ 0, Mx ≥ −q(u) for all u ∈ UΓ

}
Proposition (Krebs, S. (OMS, 2020))

A vector x solves

0 ≤ x ⊥ Mx + q(u) ≥ 0 for all u ∈ UΓ

if and only if x is a solution of the problem above with optimal objective

function value of zero.

Roadmap

• Tractability of the robust gap function problem

• Existence and uniqueness of approximate robust equilibria

27



Uncertain q . . . Bad News Again

Robust gap function problem

min
x

sup
u∈UΓ

{
x>Mx + x>q(u) : x ≥ 0, Mx ≥ −q(u) for all u ∈ UΓ

}
Proposition (Krebs, S. (OMS, 2020))

A vector x solves

0 ≤ x ⊥ Mx + q(u) ≥ 0 for all u ∈ UΓ

if and only if x is a solution of the problem above with optimal objective

function value of zero.

Roadmap

• Tractability of the robust gap function problem

• Existence and uniqueness of approximate robust equilibria

27



Uncertain q: Box Uncertainties

• UΓ: box uncertainty set

Ubox
Γ,ū := {u ∈ Rn : − ūi ≤ ui ≤ ūi , i ∈ [n], |{i ∈ [n] : ui 6= 0}| ≤ Γ}

• ūi ≥ 0 for all i ∈ [n]

• q(u) := q̄ + u with u ∈ Ubox
Γ,ū

The robust counterpart of the gap function problem in this case reads

min
x≥0

x>Mx + x>q̄ + max
{I⊆[n] : |I |≤Γ}

∑
i∈I

ūixi

s.t. Mx ≥ −q̄ +
∑
i∈I

ūiei for all I ⊆ [n], |I | ≤ Γ

28
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• ūi ≥ 0 for all i ∈ [n]

• q(u) := q̄ + u with u ∈ Ubox
Γ,ū
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Uncertain q: Box Uncertainties

Theorem

The robust counterpart (of the last slide) is equivalent to

min
x,α,β

x>Mx + x>q̄ + αΓ +
n∑

i=1

βi

s.t. Mi,·x ≥ −q̄i + ūi , i ∈ [n]

α + βi ≥ ūixi , i ∈ [n]

α ≥ 0

xi ≥ 0, βi ≥ 0, i ∈ [n]

Proof.

Read the PhD thesis of Melvyn Sim and apply the same techniques.
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Uncertain q: Box Uncertainties

Results

• The robust counterpart is convex if M is positive semi-definite

• In this case, existence of approximate robust equilibria can be shown

• If M is positive definite, the approximate robust equilibrium is unique in x

• Uniqueness of the other “primal” variables cannot be achieved

We have similar results for the case of `1 norm uncertainties

30
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Uncertain M: Box Uncertainties

• We now consider the problem

{0 ≤ x ⊥ M(u)x + q ≥ 0}u∈U

• Let’s start with a definition of M(u) in analogy to q(u):

M̄ := [m̄ij ]i,j∈[n]

with

M(u) := [m̄ij + uij ]i,j∈[n]

and

[uij ]i,j∈[n] ∈ U .
• Box uncertainties for entries of M (row-wise)

Ubox
Γ,ū,i := {ui ∈ Rn : − ūij ≤ uij ≤ ūij , j ∈ [n], |{j ∈ [n] : uij 6= 0}| ≤ Γi}

• Robust counterpart

min
x≥0

x>M̄x + x>q +
∑
i∈[n]

max
{Ii⊆[n] : |Ii |≤Γi}

∑
j∈Ii

ūijxixj

s.t.
∑
j∈[n]

m̄ijxj − max
{Ii⊆[n] : |Ii |≤Γi}

∑
j∈Ii

ūijxj ≥ −qi , i ∈ [n]
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ūijxj ≥ −qi , i ∈ [n]
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Uncertain M: Box Uncertainties

• We now consider the problem

{0 ≤ x ⊥ M(u)x + q ≥ 0}u∈U
• Let’s start with a definition of M(u) in analogy to q(u):

M̄ := [m̄ij ]i,j∈[n]

with

M(u) := [m̄ij + uij ]i,j∈[n]

and

[uij ]i,j∈[n] ∈ U .
• Box uncertainties for entries of M (row-wise)

Ubox
Γ,ū,i := {ui ∈ Rn : − ūij ≤ uij ≤ ūij , j ∈ [n], |{j ∈ [n] : uij 6= 0}| ≤ Γi}

• Robust counterpart

min
x≥0
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∑
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A Bad-News-Theorem

Theorem
Let Ubox

Γ,ū,i be the uncertainty set of row i ∈ [n] in M(u)x + q ≥ 0. Then, the

robust counterpart (of the last slide) is equivalent to

min
x,α,β,γ,δ,ε,ξ

x>Mx + x>q +
∑
i∈[n]

γiΓi +
∑
j∈[n]

δij


s.t.

∑
j∈[n]

m̄ijxj − εiΓi −
∑
j∈[n]

ξij ≥ −qi , i ∈ [n]

εi + ξij ≥ ūijxj , j ∈ [n]

εi ≥ 0, i ∈ [n]

ξij ≥ 0, i , j ∈ [n]

γi + δij ≥ ūijxixj , i , j ∈ [n]

γi ≥ 0, i ∈ [n]

δij ≥ 0, i , j ∈ [n]
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Sometimes Reading Helps . . . Xie, Shanbhag (2016)

The “correct” uncertainty modeling:

M(u) := M̄ +
∑
`∈[L]

u`M
`

with L ∈ N and M` := [m`
ij ]i,j∈[n] ∈ Rn×n

Uncertainty set:

Ubox
Γ,ū := {u ∈ RL : 0 ≤ u` ≤ ū`, ` ∈ [L], |{` ∈ [L] : u` 6= 0}| ≤ Γ}
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Good-News-Theorem

Theorem

Consider the “correct” uncertainty set with L > Γ. Furthermore, suppose that

M̄ and M`, ` ∈ [L], are positive semidefinite. Then, the robust counterpart is

equivalent to the convex, and thus tractable, problem

min
x,α,β,γ,δ

x>M̄x + x>q + Γα +
∑
`∈[L]

β`

s.t. α + β` ≥ ū`x
>M`x , ` ∈ [L]

α ≥ 0

β` ≥ 0, ` ∈ [L]

γi ≥ 0, i ∈ [n]

δi` ≥ 0, i ∈ [n], ` ∈ [L]

x ≥ 0

M̄i,·x + qi − γiΓ−
∑
`∈[L]

δi` ≥ 0, i ∈ [n]

γi + δi` ≥ −ū`M`
i,·x , i ∈ [n], ` ∈ [L]
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Further Results

Theorem
Assume that the Problem of the last slide is feasible and that M̄ and M`,

` ∈ [L], are positive semidefinite. Then, there exists a solution.

Proposition

Suppose that the matrix M̄ is positive definite. Then, the solution of Problem

is unique in x .

Comparable results for `1 norm uncertainty sets
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Uncertain q and M

No-Brainer

• If the uncertainties for q and M are independent,

we can simply combine the separate robustifications.

Open problem

• Correlation between uncertainty in q and M
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Ellipsoidal Uncertainties (Krebs, Müller, S. (2019))

• We obtain qualitatively comparable results

• The required techniques are a bit different

• Some of the results change as expected

• Tractable counterparts under the assumption positive semidefinite LCP

matrix . . .

• . . . counterpart is an SOCP

Existence & Uniqueness

• Much harder to achieve

• Before: mainly Frank–Wolfe theorem

• Now: quasi-Frank-and-Wolfe sets

A convex set C ⊆ Rn is called a quasi-Frank-and-Wolfe set, if every quadratic

function f , which is quasi-convex and bounded from below on C, attains its

infimum on C.
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Reminder: The Economist’s Problem!

Is there an established robustness concept

that allows to prove the existence of robust equilibria?

Bad news so far

• Strict robustness

• No for all relevant geometries of the uncertainty sets

• Γ-robustness

• No for all relevant geometries of the uncertainty sets

Good news

• Adjustable robustness works!
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Adjustable Robust LCPs

Find a vector r ∈ Rn, which can be adjusted for all uncertainties

(ζ, u) ∈ UM × Uq by a vector y(ζ, u) such that z(ζ, u) := r + y(ζ, u) satisfies

0 ≤ z(ζ, u) ⊥ M(ζ)z(ζ, u) + q(u) ≥ 0 for all (ζ, u) ∈ UM × Uq.

Biefel, Liers, Rolfes, S. (2020)

• Box uncertainties

• Affine decision rules

• Existence, characterization, and uniqueness of solutions
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Conclusion

Done

• Robust LCPs is a very young field of research

• First two papers: 2011 and 2014/2016

• Nothing more up to now except the papers I talked about

• Existence of robust equilibria is hard to establish . . .

• . . . but adjustable robustness does the job!

To-Do

• Real-World Applications

• Challenge: Calibration of uncertainty sets

• Other robustness concepts

• Light robustness, distributional robustness, . . .

• Correlated uncertainties between q and M
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Paper & Preprints

• Γ-Robust Linear Complementarity Problems

Jointly with Vanessa Krebs

In: Optimization Methods and Software. 2020.

• Γ-Robust Linear Complementarity Problems with Ellipsoidal

Uncertainty Sets

Jointly with Vanessa Krebs and Michael Müller

• Affinely Adjustable Robust Linear Complementarity Problems

Jointly with Christian Biefel, Frauke Liers, and Jan Rolfes

• Γ-Robust Electricity Market Equilibrium Models with Transmission

and Generation Investments

Jointly with Emre Çelebi and Vanessa Krebs

Accepted for publication (10/2020) in Energy Systems

• Strictly and Γ-Robust Counterparts of Electricity Market Models:

Perfect Competition and Nash-Cournot Equilibria

Jointly with Anja Kramer and Vanessa Krebs
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Thanks!
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