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- Important tool to model practically relevant situations

- Power markets

- Gas markets

- Auctions

- Transport planning
- ...and many more ...

- Rational players compete for a set of goods
- Rationality = utility maximization
- Market should clear so that no player can improve her utility

by unilaterally changing her decision

- Classic questions
- Does an equilibrium exist?
- Is it unique?
- How can we compute such an equilibrium?
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Bad news

- The world is not convex!
- Two major reasons for nonconvexity

- Nonlinear modeling of physics
- Mixed-integer modeling of discrete controls



We are not the first ones ...

- Assignment problems

- Shapley and Shubik (1971), Leonard (1983), Bikhchandani, Ostroy, et al. (2002),
Bikhchandani and Ostroy (2006)

- General exchange economies with indivisibilities
- Bikhchandani and Mamer (1997), Baldwin and Klemperer (2019)
- Discrete markets
- O'Neill et al. (2005), Guo et al. (2021)
- Trading networks
- Hatfield et al. (2013), Fleiner et al. (2019), Hatfield et al. (2019)
- Economies with increasing returns to scale
- Beato (1982), Brown et al. (1986), Bonnisseau and Cornet (1988), Bonnisseau and Cornet (1990)
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Abstract

We consider a basic resource allocation game, where the players” strategy spaces are sub-
sets of R™ and cost/utility functions are parameterized by some common vector u € R™ and,
otherwise, only depend on the own strategy choice. A strategy of a player can be interpreted
as a vector of resource consumption and a joint strategy profile naturally leads to an aggregate
consumption vector. Resources can be priced, that is, the game is augmented by a price vector
A € R? and players have quasi-linear overall costs/utilities meaning that in addition to the
Dngmal costs/utilities, a player needs to pay the corresponding price per consumed unit. We

the followi jon: for which aggregated consumption vectors u can we find
prices A that induce an eqml;hnum realizing the targeted consumption profile?

For answering this question, we revisit a well-known duality-based framework and derive
several characterizations of the existence of such u and A using convexification techniques.
‘We show that for finite strategy spaces or certain concave games, the equilibrium existence
problem reduces to solving a well-structured LP. We then consider a class of monotone ag-
gregative games having the property that the cost/utility functions of players may depend on
the induced load of a strategy profile. For this class, we show a sufficient condition of en-
forceability based on the previous characterizations. We demonstrate that this framework can
help to unify parts of four largely independent streams in the literature: tolls in transportation
systems, Walrasian market equilibria, trading networks and congestion control in communica-
tion networks. Besides reproving existing results we establish new existence results by using
methods from polyhedral combinatorics, polymatroid theory and discrete convexity.




The paper in the background

Unifying framework for many (possibly
nonconvex) equilibrium problems including
network tolls for transportation networks
indivisible item auctions

bilateral trade

congestion control

energy markets

Framework is based on Lagrangian duality

Enables to characterize the existence of
solutions to (possibly) nonconvex
equilibrium problems

Main idea: check if a suitably chosen
optimization problem has a zero duality gap
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- Each player i € I solves
min  fi(zi,p) = ci(z) + pThi(z) st zeY

for an exogenously given price vector p

- Market-clearing condition
E hi(z) =0
icl

- Putting this all together defines the market equilibrium problem

- In other words: this is a GNEP and we look for a variational equilibrium



Existence of Equilibria



Existence

- Part 1 of Theorem 2.3 in Harks (2020)
- In the case of existence, market equilibria correspond to welfare optima

- Welfare optimization problem
min da(z) st ozeY, > h(z)=0
i€l i€l
- Bad news (due to nonconvexity)

- Even if a solution to the welfare optimization problem exists, this solution does not necessarily
constitute a market equilibrium if nonconvexities are present in the players’ problems.
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Idea #1

- Market equilibria = primal-dual solution pairs of the welfare problem
with zero duality gap

Idea #2
- First compute a solution y* of the welfare problem
- Then check if there are prices p* so that (y*, p*) is a market equilibrium

Contribution

- Assumptions under which it is enough to check a single critical price vector ...

- to obtain a market equilibrium
- or to prove that none can exist
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Basic Duality Theory

Lagrangian of the welfare optimization problem

Lzp) = (al@)+p"hiz))

i€l

Dual problem
sup d(p), d(p):=infL(z,p)
pERP zey

Weak duality

inf {Z a(z):zeY, Y hiz)= 0} > sup d(p).

n
iel iel peR’P

Attention: duality gap of the welfare problem can be positive in the presence of nonconvexities
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Characterization of Market Equilibria

Theorem (see Part 1 of Theorem 2.3 in Harks (2020))

The pair (y*, p*) is a market equilibrium if and only if y* and p* are solutions of the welfare
optimization problem and the corresponding dual problem, respectively, with zero duality gap.

Immediate consequences

- If (y*,p*) is @a market equilibrium, then y* is a global solution of the welfare problem.

- If (y*, p*) is a market equilibrium, then (y, p*) is a market equilibrium
for all global solutions y of the welfare problem.

- If (y*,p*) and (¥, p) are two market equilibria of, then so are (y*,p) and (7, p*).

- If y* is a global solution of the welfare problem, for which there exists no p such that (y*, p) is
a market equilibrium, then the market equilibrium problem has no solution.



Characterization of Market Equilibria

Corollary
Let S C I be the set of players with unique best responses for all price vectors p € R".

(@) If (z*,p*) and (2, p) are two market equilibria, then z& = Zs.

(b) If z* and 2 are two solutions of the welfare problem with z& # Zs,
then the market equilibrium problem does not have a solution.
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Idea #2 (Revisited)

1. Compute a solution y* of the welfare problem

2. Check if there are prices p* so that (y*, p*) is a market equilibrium

To determine such an equilibrium price p*, let M(z*) € R™ be a set that includes all market
equilibrium prices, i.e., it has the property

(z*,p*) is @a market equilibrium = p* € N(z").

Assumption
We can compute an enclosing box of M(z*) which takes the form

{peR™:p- <p; <pjforallie{1,...,np}}



Theorem

Let z* be a solution of the welfare and let M(z*) # ( be a set satisfying the “enclosing-box
condition”. Assume that for all i € {1,...,np} at least one of the following properties is satisfied:

@) pi =pj,

(b) pt < oo and (hi(z¥))i < (hi(z)))i for all z; € Y; and all players i € |,
(c) p; > —oco and (hi(z'))i > (hi(z))i for all z; € Y; and all players i € |,
(d) p

= —0o0, p,- = oo, and (hi(z"))i = (hi(z))i for all zi € Y; and all players i € I.

C
d

Then, there exists a market equilibrium if and only if (z*,p) is a market equilibrium, where the
critical price p is defined as

p. =pi, if(a)applies,

[on if (b) applies,

(7 if (c) applies,

0, if (d) applies.



A simple yet effective algorithm

Input: Market equilibrium problem
1 Compute a global solution z* of the welfare optimization problem.
2 if the welfare optimization problem does not have a solution then
‘ return “No market equilibrium exists.”

w

4 else

5 Define the critical price vector p as in the last theorem.

6 if z* is a best response to the price vector p for all players i € | then
7 ‘ return (z*, p) is a market equilibrium.

8 else

9 ‘ return “No market equilibrium exists.”
10 end

1 end



Applications
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Energy Networks

Network

- Network is modeled as a directed and weakly connected graph G = (V,A)

+ N = NgUNsUNp
- Ng C N: consumer locations
- Ns C N: producer locations
- Ng C N: inner nodes

Players

- Consumers J
max / Py(w)dw — pndn st dn > 0.
0

n

- Producers
n}ax PnYn — Cn(Yn) St ¥n>yn > 0.



Further Player: TSO

Yoopn| D - Y aa —'(a,%)

maxXx

st

neNgUNs aesin(n)
Z qa — Z Ja
aealﬂ(”) GESOUI(H)
Z Ga — Z Ja
ueéi”( n) aesout(n)
Z Qa — Z Ja
aes'n(n) aesout(n)
2 = Y G
GEO'” ) GE(SDM )

F(g,x) >

aesout(n

>0 forallne Ng

IN

0 forallne Ns

Y

—yn foralln e Ns

=0 forallne Ng



Market Clearing

Z Ga — E ga =dn foralln e Ny

aes'n(n) aesout(n)

> qa— > Go=-ys forallneNns

aesin(n) a€5out(n)



Welfare Optimization Problem

e Z/ Pa(w) dw — 3 olyn) — (g, %)

4% nENy NneNs
st > Ga— Y, qa=0 forallneNo
aesn(n) a€6°“1(n)
> Ga— Y. Ga=d, forallne Ny
066‘” ) ae&OU't( )
> G- > Ga=-y, forallneNs
aesin(n) aesout(n)

F(g,x) >0, d>0, y>y=>0



Characterization of Market Equilibria

Assumption

1. The inverse demand functions P,(-) are continuous and strictly decreasing for all n € Ny

2. The variable cost functions c¢,(-) are monotonically increasing with ¢,(0) = 0, convex, and
continuously differentiable for all n € Ns

Theorem

Suppose the assumption holds. Let (d*,y*,q*,x*) be a solution of the welfare problem and define p
as

n-— o
cn(vs), ifn € Ns.

Then, either (d*,y*,q*,x*,p) is a market equilibrium, or there is no market equilibrium.

. {Pﬂ(d;), ifn e Ng,

20
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Physical and technical model
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Application #1: Gas Flow

Physical and technical model

Pi — Pm = NaGalGa|, a=(n,m) €A
pr <pn<ps, NEN
da <qa<qs, a€A

Transportation costs

c'(@) = _ aq;

acA

Bad news: There are instances that have no equilibria! (Grimm, Griibel, Schewe, S, Zottl, 2019)

21



Application #1: DC Line Switching

Physical and technical model

da <4a<qq,

On — O — 0™ = Buqa,

Mg (1= 2a) < 60 — O — 03" — Baga < M (1 — Z4),
G2 Za < Ga < G4 Za,

Zqa € {0,1},

Transportation costs

(9,2) =) aqa+ ) Bz

aecA aeA,

Bad news: There are instances that have no equilibria!

aeA-
a=(nm)eA_
a=(n,m) €A
aeAy
aeA;

22



Computational Setup

- Python 3.8.5

- Pyomo 5.73 (Hart et al., 2017)

- NLP solver for gas flow application: ANTIGONE 1.1 (Misener and Floudas, 2014)
- MILP solver for DC application: Gurobi 911

- Xeon E3-1240 v5 CPU (4 cores) at 3.50 GHz with 32 GB RAM

23



Computational Results: Gas Flow Application

- Gaslib instances (http://gaslib.zib.de)
- Modifications as in Heitsch, Henrion, Kleinert, S. (2021) and Schewe, Thirauf, S. (2020)
- No fixed transportation costs; transportation cost factor a in {0.01,0.05, 0.1}

Name IN|  [Ng| |Ns] |A|  #instances
Gas-134-S 134 45 3 133 60
Gas-11-H 11 3 3 10 36

Results
- 84 instances are solved in 1 hour
- Average runtime: 531s
- Median runtime: 18.7s
- 56 instances have a “congested” flow situation

- We find an equilibrium for all instances

24


http://gaslib.zib.de

Computational Results: DC Line Switching

- MATPOWER 7.0 instances with polynomial cost functions

- Exclude instances for which minimum & maximum phase angle difference coincide in all nodes

- In total: 29 instances

- All instances with more than 1000 nodes and more than 1500 arcs cannot be solved to
optimality

- 17 remaining instances

- a € {0.01,0.05,0.1} and 3 € {20,50}

- In total: 102 instances

Instance  |[N| |Ng| |Ns|]  |A] |A4]

Smallest 5 3 4 6 1
Average 56 33 15 97 10
Biggest 300 191 69 411 42

Results
- Average runtime: 0.4s — Median runtime: 0.3s

- 60 out of 102 instances possess an equilibrium 25
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Open Questions & Future Work

Open Questions

- Explain the results: What is the “real difference”
between gas and power?

: . . . - What can we do if no market equilibrium exists?
Julia Grubel, Olivier Huber, Lukas Humbs,

Max Klimm, Martin Schmidt, Alexandra
Schwartz
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