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General Setting



Market Equilibrium Problems

• Important tool to model practically relevant situations
• Power markets
• Gas markets
• Auctions
• Transport planning
• … and many more …

• Rational players compete for a set of goods

• Rationality = utility maximization

• Market should clear so that no player can improve her utility
by unilaterally changing her decision

• Classic questions
• Does an equilibrium exist?
• Is it unique?
• How can we compute such an equilibrium?
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The Convex World

Suitable convexity assumptions allow to prove the existence of market equilibria

• Wald (1951)

• Arrow, Debreu (1954)

• Gale (1955)

• McKenzie (1959)

• Debreu (1962)

Bad news

• The world is not convex!
• Two major reasons for nonconvexity

• Nonlinear modeling of physics
• Mixed-integer modeling of discrete controls
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We are not the first ones …

• Assignment problems
• Shapley and Shubik (1971), Leonard (1983), Bikhchandani, Ostroy, et al. (2002),
Bikhchandani and Ostroy (2006)

• General exchange economies with indivisibilities
• Bikhchandani and Mamer (1997), Baldwin and Klemperer (2019)

• Discrete markets
• O’Neill et al. (2005), Guo et al. (2021)

• Trading networks
• Hatfield et al. (2013), Fleiner et al. (2019), Hatfield et al. (2019)

• Economies with increasing returns to scale
• Beato (1982), Brown et al. (1986), Bonnisseau and Cornet (1988), Bonnisseau and Cornet (1990)
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The paper in the background

• Unifying framework for many (possibly
nonconvex) equilibrium problems including

• network tolls for transportation networks
• indivisible item auctions
• bilateral trade
• congestion control
• energy markets

• Framework is based on Lagrangian duality

• Enables to characterize the existence of
solutions to (possibly) nonconvex
equilibrium problems

• Main idea: check if a suitably chosen
optimization problem has a zero duality gap
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Modeling

• Each player i ∈ I solves

min
zi

fi(zi, p) = ci(zi) + p>hi(zi) s.t. zi ∈ Yi

for an exogenously given price vector p

• Market-clearing condition ∑
i∈I

hi(zi) = 0

• Putting this all together defines the market equilibrium problem

• In other words: this is a GNEP and we look for a variational equilibrium
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Existence of Equilibria



Existence

• Part 1 of Theorem 2.3 in Harks (2020)
• In the case of existence, market equilibria correspond to welfare optima

• Welfare optimization problem

min
z

∑
i∈I

ci(zi) s.t. z ∈ Y,
∑
i∈I

hi(zi) = 0

• Bad news (due to nonconvexity)
• Even if a solution to the welfare optimization problem exists, this solution does not necessarily
constitute a market equilibrium if nonconvexities are present in the players’ problems.
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Main Ideas

Idea #1

• Market equilibria =⇒ primal-dual solution pairs of the welfare problem
with zero duality gap

Idea #2

• First compute a solution y∗ of the welfare problem

• Then check if there are prices p∗ so that (y∗,p∗) is a market equilibrium

Contribution

• Assumptions under which it is enough to check a single critical price vector …
• to obtain a market equilibrium
• or to prove that none can exist
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Basic Duality Theory

Lagrangian of the welfare optimization problem

L(z, p) :=
∑
i∈I

(
ci(zi) + p>hi(zi)

)

Dual problem
sup
p∈Rnp

d(p), d(p) := inf
z∈Y

L(z,p)

Weak duality

inf
z∈Y

{∑
i∈I

ci(zi) : z ∈ Y,
∑
i∈I

hi(zi) = 0
}

≥ sup
p∈Rnp

d(p).

Attention: duality gap of the welfare problem can be positive in the presence of nonconvexities
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Characterization of Market Equilibria

Theorem (see Part 1 of Theorem 2.3 in Harks (2020))

The pair (y∗, p∗) is a market equilibrium if and only if y∗ and p∗ are solutions of the welfare
optimization problem and the corresponding dual problem, respectively, with zero duality gap.

Immediate consequences

• If (y∗, p∗) is a market equilibrium, then y∗ is a global solution of the welfare problem.

• If (y∗, p∗) is a market equilibrium, then (y, p∗) is a market equilibrium
for all global solutions y of the welfare problem.

• If (y∗, p∗) and (ŷ, p̂) are two market equilibria of, then so are (y∗, p̂) and (ŷ, p∗).

• If y∗ is a global solution of the welfare problem, for which there exists no p such that (y∗,p) is
a market equilibrium, then the market equilibrium problem has no solution.
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Characterization of Market Equilibria

Corollary

Let S ⊆ I be the set of players with unique best responses for all price vectors p ∈ Rnp .

(a) If (z∗,p∗) and (ẑ, p̂) are two market equilibria, then z∗S = ẑS.

(b) If z∗ and ẑ are two solutions of the welfare problem with z∗S 6= ẑS,
then the market equilibrium problem does not have a solution.
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Algorithm



Idea #2 (Revisited)

1. Compute a solution y∗ of the welfare problem

2. Check if there are prices p∗ so that (y∗, p∗) is a market equilibrium

To determine such an equilibrium price p∗, let Π(z∗) ⊆ Rnp be a set that includes all market
equilibrium prices, i.e., it has the property

(z∗,p∗) is a market equilibrium =⇒ p∗ ∈ Π(z∗).

Assumption

We can compute an enclosing box of Π(z∗) which takes the form

{p ∈ Rnp : p−i ≤ pi ≤ p+i for all i ∈ {1, . . . ,np}}
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Theorem

Let z∗ be a solution of the welfare and let Π(z∗) 6= ∅ be a set satisfying the “enclosing-box
condition”. Assume that for all i ∈ {1, . . . ,np} at least one of the following properties is satisfied:

(a) p−i = p+i ,

(b) p+i < ∞ and (hi(z∗i ))i ≤ (hi(zi))i for all zi ∈ Yi and all players i ∈ I,

(c) p−i > −∞ and (hi(z∗i ))i ≥ (hi(zi))i for all zi ∈ Yi and all players i ∈ I,

(d) p−i = −∞, p+i = ∞, and (hi(z∗i ))i = (hi(zi))i for all zi ∈ Yi and all players i ∈ I.

Then, there exists a market equilibrium if and only if (z∗, p̂) is a market equilibrium, where the
critical price p̂ is defined as

p̂i :=


p−i = p+i , if (a) applies,
p+i , if (b) applies,
p−i , if (c) applies,
0, if (d) applies.
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A simple yet effective algorithm

Input: Market equilibrium problem
1 Compute a global solution z∗ of the welfare optimization problem.
2 if the welfare optimization problem does not have a solution then
3 return “No market equilibrium exists.”
4 else
5 Define the critical price vector p̂ as in the last theorem.
6 if z∗i is a best response to the price vector p̂ for all players i ∈ I then
7 return (z∗, p̂) is a market equilibrium.
8 else
9 return “No market equilibrium exists.”
10 end
11 end
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Applications



Energy Networks

Network

• Network is modeled as a directed and weakly connected graph G = (V, A)
• N = Nd ∪ Ns ∪ N0

• Nd ⊂ N: consumer locations
• Ns ⊂ N: producer locations
• N0 ⊂ N: inner nodes

Players

• Consumers
max
dn

∫ dn

0
Pn(ω)dω − pndn s.t. dn ≥ 0.

• Producers
max
yn

pnyn − cn(yn) s.t. ȳn ≥ yn ≥ 0.
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Further Player: TSO

max
q,x

∑
n∈Nd∪Ns

pn

 ∑
a∈δin(n)

qa −
∑

a∈δout(n)

qa

− ct(q, x)

s.t.
∑

a∈δin(n)

qa −
∑

a∈δout(n)

qa ≥ 0 for all n ∈ Nd

∑
a∈δin(n)

qa −
∑

a∈δout(n)

qa ≤ 0 for all n ∈ Ns

∑
a∈δin(n)

qa −
∑

a∈δout(n)

qa ≥ −ȳn for all n ∈ Ns

∑
a∈δin(n)

qa −
∑

a∈δout(n)

qa = 0 for all n ∈ N0

F(q, x) ≥ 0
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Market Clearing

∑
a∈δin(n)

qa −
∑

a∈δout(n)

qa = dn for all n ∈ Nd

∑
a∈δin(n)

qa −
∑

a∈δout(n)

qa = −yn for all n ∈ Ns
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Welfare Optimization Problem

max
d,y,q,x

∑
n∈Nd

∫ dn

0
Pn(ω)dω −

∑
n∈Ns

cn(yn)− ct(q, x)

s.t.
∑

a∈δin(n)

qa −
∑

a∈δout(n)

qa = 0 for all n ∈ N0

∑
a∈δin(n)

qa −
∑

a∈δout(n)

qa = dn for all n ∈ Nd

∑
a∈δin(n)

qa −
∑

a∈δout(n)

qa = −yn for all n ∈ Ns

F(q, x) ≥ 0, d ≥ 0, ȳ ≥ y ≥ 0
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Characterization of Market Equilibria

Assumption

1. The inverse demand functions Pn(·) are continuous and strictly decreasing for all n ∈ Nd
2. The variable cost functions cn(·) are monotonically increasing with cn(0) = 0, convex, and
continuously differentiable for all n ∈ Ns

Theorem

Suppose the assumption holds. Let (d∗, y∗, q∗, x∗) be a solution of the welfare problem and define p̂
as

p̂n :=

Pn(d∗n), if n ∈ Nd,
c′n(y∗n ), if n ∈ Ns.

Then, either (d∗, y∗, q∗, x∗, p̂) is a market equilibrium, or there is no market equilibrium.

20



Application #1: Gas Flow

Physical and technical model

p2n − p2m = Λaqa|qa|, a = (n,m) ∈ A

p−n ≤ pn ≤ p+n , n ∈ N

q−a ≤ qa ≤ q+a , a ∈ A

Transportation costs

ct(q) =
∑
a∈A

αq2a

Bad news: There are instances that have no equilibria! (Grimm, Grübel, Schewe, S, Zöttl, 2019)

21



Application #1: Gas Flow

Physical and technical model

p2n − p2m = Λaqa|qa|, a = (n,m) ∈ A

p−n ≤ pn ≤ p+n , n ∈ N

q−a ≤ qa ≤ q+a , a ∈ A

Transportation costs

ct(q) =
∑
a∈A

αq2a

Bad news: There are instances that have no equilibria! (Grimm, Grübel, Schewe, S, Zöttl, 2019)

21



Application #1: Gas Flow

Physical and technical model

p2n − p2m = Λaqa|qa|, a = (n,m) ∈ A

p−n ≤ pn ≤ p+n , n ∈ N

q−a ≤ qa ≤ q+a , a ∈ A

Transportation costs

ct(q) =
∑
a∈A

αq2a

Bad news: There are instances that have no equilibria! (Grimm, Grübel, Schewe, S, Zöttl, 2019)

21



Application #1: DC Line Switching

Physical and technical model

q−a ≤ qa ≤ q+a , a ∈ A−

θn − θm − θshifta = Baqa, a = (n,m) ∈ A−

M−
a (1− za) ≤ θn − θm − θshifta − Baqa ≤ M+

a (1− za), a = (n,m) ∈ A+
q−a za ≤ qa ≤ q+a za, a ∈ A+

za ∈ {0, 1}, a ∈ A+

Transportation costs

ct(q, z) =
∑
a∈A

αq2a +
∑
a∈A+

βza

Bad news: There are instances that have no equilibria!
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Computational Setup

• Python 3.8.5

• Pyomo 5.7.3 (Hart et al., 2017)

• NLP solver for gas flow application: ANTIGONE 1.1 (Misener and Floudas, 2014)

• MILP solver for DC application: Gurobi 9.1.1

• Xeon E3-1240 v5 CPU (4 cores) at 3.50 GHz with 32 GB RAM
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Computational Results: Gas Flow Application

• GasLib instances (http://gaslib.zib.de)
• Modifications as in Heitsch, Henrion, Kleinert, S. (2021) and Schewe, Thürauf, S. (2020)
• No fixed transportation costs; transportation cost factor α in {0.01, 0.05, 0.1}

Name |N| |Nd| |Ns| |A| # instances

Gas-134-S 134 45 3 133 60
Gas-11-H 11 3 3 10 36

Results

• 84 instances are solved in 1 hour

• Average runtime: 53.1 s

• Median runtime: 18.7 s

• 56 instances have a “congested” flow situation

• We find an equilibrium for all instances

24
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Computational Results: DC Line Switching

• MATPOWER 7.0 instances with polynomial cost functions
• Exclude instances for which minimum & maximum phase angle difference coincide in all nodes
• In total: 29 instances
• All instances with more than 1000 nodes and more than 1500 arcs cannot be solved to
optimality

• 17 remaining instances
• α ∈ {0.01, 0.05, 0.1} and β ∈ {20, 50}
• In total: 102 instances

Instance |N| |Nd| |Ns| |A| |A+|

Smallest 5 3 4 6 1
Average 56 33 15 97 10
Biggest 300 191 69 411 42

Results

• Average runtime: 0.4 s — Median runtime: 0.3 s

• 60 out of 102 instances possess an equilibrium 25



Open Questions & Future Work

Julia Grübel, Olivier Huber, Lukas Hümbs,
Max Klimm, Martin Schmidt, Alexandra

Schwartz

Existence of Energy Market Equilibria with
Convex and Nonconvex Players

Open Questions

• Explain the results: What is the “real difference”
between gas and power?

• What can we do if no market equilibrium exists?
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