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General Setting and Some Obstacles



Bilevel Optimization

min
x,y

F(x, y)

s.t. G(x, y) ≤ 0

x ∈ Rnx , y ∈ Rny

y ∈ S(x)

S(x) is the solution set of the convex lower-level problem

S(x) = argmin
y

{
f (x, y) : g(x, y) ≤ 0, y ∈ Rny}

• NP-hard problem in general (Hansen, Jaumard, Savard 1992)

• Optimistic variant (Dempe 2002)
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Black-Box Constraint in the Lower Level

A “small” extension

S(x) = argmin
y

{
f (x, y) : g(x, y) ≤ 0, b(y) ≤ 0, y ∈ Rny}

Assumption

The black-box function b is convex and for all (x, y) ∈ {(x, y) : G(x, y) ≤ 0, g(x, y) ≤ 0} …

1. we can evaluate the function b(y),

2. we can evaluate the gradient ∇b(y),

3. the gradient is bounded, i.e., ‖∇b(y)‖ ≤ K for a fixed K ∈ R.
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Some Notation & Single-Level Reformulation

• Shared constraint set

Ω := {(x, y) : G(x, y) ≤ 0, g(x, y) ≤ 0, b(y) ≤ 0}

• Projection onto the decision space of the leader

Ωu := {x : ∃y with (x, y) ∈ Ω}

• Feasible set of the lower-level problem for a fixed leader decision x = x̄

Ω`(x̄) := {y : g(x̄, y) ≤ 0, b(y) ≤ 0}

• Optimal value function of the lower level

ϕ(x) = min
y
{f (x, y) : g(x, y), b(y) ≤ 0, y ∈ Rny}

• Single-level reformulation

min
x,y

F(x, y)

s.t. G(x, y) ≤ 0, g(x, y) ≤ 0, b(y) ≤ 0

f (x, y) ≤ ϕ(x)

x ∈ Rnx , y ∈ Rny
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Obstacles and Pitfalls

• Main challenge: black-box constraint b(y) ≤ 0

• Not given explicitly→ optimality conditions are not given explicitly as well

• Possible remedies
• Cutting plane techniques (Kelley 1960)
• Outer approximation (Duran, Grossmann 1986; Fletcher, Leyffer 1994)

• But: b(y) ≤ 0 can only by satisfied up to a prescribed tolerance
• Specifying the quality of solutions via ε-δ-optimality

• Global optimization (Locatelli, Schoen 2013)
• Bilevel optimization (Mitsos, Lemonidis, Barton 2008)
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ε-δ-Optimality

Definition
For δ = (δG, δg, δb, δf ) ∈ Rmu+m`+2

≥0 , a point (x̄, ȳ) ∈ Rnx × Rny is called δ-feasible for the bilevel
problem, if G(x̄, ȳ) ≤ δG, g(x̄, ȳ) ≤ δg, b(y) ≤ δb, and f (x, y) ≤ ϕ(x) + δf hold. Moreover, for ε ≥ 0, a
point (x∗, y∗) ∈ Rnx × Rny is called ε-δ-optimal for the bilevel problem, if it is δ-feasible and if
F(x∗, y∗) ≤ F∗ + ε holds, with F∗ denoting the optimal objective function value of the bilevel
problem.

• A δ-feasible point (x̄, ȳ) is δf -(δg, δb)-optimal for the lower level with fixed x = x̄

• Assume f and g pose no challenges→ choose δf = δg = 0

• Assume F and G pose no challenges→ we can obtain 0-δ-optimal solutions with
δ = (0, 0, δb, 0)
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0-δ-optimal solutions with δ = (0, 0, δb, 0)?

• Consider the relaxed lower-level problem

min
y∈Rny

f (x̄, y) s.t. g(x̄, y) ≤ 0, b(y) ≤ δb

• Denote the optimal value function by
¯
ϕ(x)

• Relaxation property yields
¯
ϕ(x) ≤ ϕ(x) for all feasible x ∈ Ωu

• First-relax-then-reformulate leads to a single-level problem with f (x, y) ≤
¯
ϕ(x)

• If
¯
ϕ(x) < ϕ(x) holds for any x ∈ Ωu, this single-level reformulation

is not a relaxation of the original single-level reformulation

• It is not clear whether and how ε-δ-optimality can be guaranteed

Can we hope for the δ-feasible points with δ = (0, 0, δb, 0)?
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A “First-Relax-Then-Reformulate”
Approach



A “First-Relax-Then-Reformulate” Approach

• Block-box constraint b(y) ≥ 0 is convex
• Construct a sequence of linear outer approximations (Er, er)r∈N of the black-box
constraint b(y) ≤ 0 with the property

{y ∈ Rny : b(y) ≤ 0} ⊆ {y ∈ Rny : Er+1y ≤ er+1} ⊆ {y ∈ Rny : Ery ≤ er}

• For a given upper-level solution x̄ ∈ Ωu and r ∈ N, the adapted lower-level problem reads

min
y∈Rny

f (x̄, y) s.t. g(x̄, y) ≤ 0, Ery ≤ er

• This is a relaxation of the original lower-level problem
•
¯
ϕr(x): optimal value function

• Assumption: Slater’s constraint qualification holds

Proposition

For every r ∈ N and every upper-level decision x ∈ Ωu, it holds

¯
ϕr(x) ≤

¯
ϕr+1(x) ≤ ϕ(x)
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A “First-Relax-Then-Reformulate” Approach

Modified variant of the single-level reformulation

min
x,y

F(x, y)

s.t. G(x, y) ≤ 0, g(x, y) ≤ 0

Ery ≤ er

f (x, y) ≤
¯
ϕr(x)

x ∈ Rnx , y ∈ Rny

Feasibility problem

min
x,y,s

s

s.t. G(x, y) ≤ 0, g(x, y) ≤ 0

Ery ≤ er

f (x, y) ≤
¯
ϕr(x) + s

x ∈ Rnx , y ∈ Rny
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Algorithm 1 “First-Relax-Then-Reformulate”.

1: Choose δb > 0, set r = 0, s = 0, χ =∞, E0 = [0 . . . 0] ∈ R1×ny , e0 = 0 ∈ R.
2: while χ > δb or s > 0 do
3: Construct Er+1 and er+1

4: if the modified variant of the single-level reformulation is feasible then
5: Solve this problem to obtain (xr+1, yr+1) and set s = 0.
6: else if the feasibility problem is feasible then
7: Solve this problem to obtain (xr+1, yr+1, s).
8: else
9: Return “The original problem is infeasible.”.
10: end if
11: Set r ← r + 1 and χ = b(yr).
12: end while
13: Return (x̄, ȳ) = (xr, yr).

Theorem: If Algorithm 1 terminates, then (x̄, ȳ) is (0, 0, δb, 0)-feasible for original bilevel problem.
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A European Gas Market Model with
Chance Constraints



The European Entry-Exit Gas Market

Level 4 TSO cost-optimally transports the given nominations

Level 3 Traders nominate at a day-ahead market

Level 2 Traders book, i.e., sign mid- to long-term capacity contracts

Level 1 TSO announces technical capacities and booking price floors

Grimm, Schewe, S., Zöttl (2019)

• Four-level modeling of the European entry-exit gas market

• Identification of assumptions that allow to simplify the model

• Perfect competition→ reduction to a bilevel model
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Bilevel Modeling Under Perfect Competition: Upper Level

max
qTC,

¯
πbook,π,q

ϕu(qnom, q) =
∑
t∈T

∑
i∈P−

∫ qnomi,t

0
Pi,t(s)ds−

∑
i∈P+

cvari qnomi,t

−∑
t∈T

∑
a∈A

ctrans(qa,t)

s.t. 0 ≤ qTCu , 0 ≤
¯
πbooku for all u ∈ V+ ∪ V−∑

u∈V+∪V−

∑
i∈Pu

¯
πbooku qbooki =

∑
t∈T

∑
a∈A

ctrans(qa,t)

(π, q) ∈ F(qnom)

(qbook, qnom) ∈ argmax { lower-level problem }
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Bilevel Modeling Under Perfect Competition: Lower Level

max
qbook,qnom

∑
t∈T

∑
i∈P−

∫ qnomi,t

0
Pi,t(s)ds−

∑
i∈P+

cvari qnomi,t

− ∑
u∈V+∪V−

∑
i∈Pu

¯
πbooku qbooki

s.t.
∑
i∈Pu

qbooki ≤ qTCu for all u ∈ V+ ∪ V−

0 ≤ qnomi,t ≤ qbooki for all i ∈ P− ∪ P+, t ∈ T∑
i∈P−

qnomi,t −
∑
i∈P+

qnomi,t = 0 for all t ∈ T
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Probabilistic Extension

• In reality, exit players i ∈ P− nominate quantities qnomi,t

without exactly knowing the actual load ξi,t

• Load vector ξ = (ξi,t)i∈P−,t∈T with log-concave cumulative distribution function

• In particular: ξ ∼ N (m,Σ)

• Modeling assumption: the TSO imposes a fee µ on the exit players i ∈ P− to ensure that the
realized loads are covered up to a specified safety level p ∈ [0, 1]

• Joint (over all times and exit players) probabilistic constraint

P
(
ξi,t ≤ qnomi,t for all i ∈ P−, t ∈ T

)
≥ p

• Log-concavity of the Gaussian distribution function implies that the log-transformed
probabilistic load coverage constraint

h(qnom− ) := log p− log P
(
ξi,t ≤ qnomi,t for all i ∈ P−, t ∈ T

)
≤ 0

is convex
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Back to the “First-Relax-Then-Reformulate” Approach

In iteration r, the lower-level relaxation reads

max
qbook,qnom

∑
t∈T

∑
i∈P−

∫ qnomi,t

0
Pi,t(s)ds−

∑
i∈P+

cvari qnomi,t

− ∑
u∈V+∪V−

∑
i∈Pu

¯
πbooku qbooki

s.t.
∑
i∈Pu

qbooki ≤ qTCu , u ∈ V+ ∪ V−

0 ≤ qnomi,t ≤ qbooki , i ∈ P+ ∪ P−, t ∈ T∑
i∈P−

qnomi,t −
∑
i∈P+

qnomi,t = 0, t ∈ T

h(qj−) +∇qnom−
h(qj−)

>(qnom− − qj−) ≤ 0, j = 1, . . . , r

16



Back to the “First-Relax-Then-Reformulate” Approach

• This lower-level problem is convex and satisfies Slater’s CQ

• Take its KKT conditions→ MPCC as a single-level reformulation

• Linearize the KKT complementarity conditions using binary variables and big-Ms

• Single-level reformulation is a mixed-integer and concave maximization problem with bilinear
(and thus nonconvex) equality constraints

• Can be solved with spatial branching …

• … but it’s challenging!
• See the paper for the details

• Verification of Slater’s CQ
• Provably correct big-Ms
• Further quantile and other cuts
• Further bounding techniques to obtain ex-post optimality certificates
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Numerical Results
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Numerical Results

Bisection Bounding δ-Feasibility Total

p Runtime #Iter. Runtime #Iter. Runtime #Iter. Runtime Gap

0.60 12.13 32 36.80 10 28.97 42 77.9 0.001
0.65 14.15 28 32.00 16 40.71 44 86.86 0.001
0.70 11.13 26 29.70 13 39.70 39 80.53 0.001
0.75 9.04 25 28.55 6 14.19 31 51.78 0.002
0.80 7.98 25 29.06 4 6.26 29 43.3 0.005
0.85 11.08 21 24.01 3 7.41 24 42.5 0.006
0.90 11.05 23 26.34 8 27.52 31 64.91 0.017
0.95 5.96 24 27.99 6 14.14 30 48.09 0.010
0.96 7.56 22 24.56 3 4.17 25 36.29 0.011
0.97 6.94 21 23.96 4 9.20 25 40.10 0.015
0.98 4.63 25 93.68 9 106.31 34 204.62 0.032
0.99 6.96 26 29.76 10 1250.65 36 1287.37 0.187
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Total Welfare and Price of Load Coverage
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That’s It!

• Bilevel problems with black-box constraint in the lower level

• Algorithm to compute δ-feasible points

• Relevant application for chance-constrained modeling
of the EU gas market

• High-quality solutions in practice

• Algorithms for ε-δ-optimal points?

• Black-box functions that depend on the leader’s decision?

Stay healthy!

21



That’s It!

• Bilevel problems with black-box constraint in the lower level

• Algorithm to compute δ-feasible points

• Relevant application for chance-constrained modeling
of the EU gas market

• High-quality solutions in practice

• Algorithms for ε-δ-optimal points?

• Black-box functions that depend on the leader’s decision?

Stay healthy!

21



That’s It!

• Bilevel problems with black-box constraint in the lower level

• Algorithm to compute δ-feasible points

• Relevant application for chance-constrained modeling
of the EU gas market

• High-quality solutions in practice

• Algorithms for ε-δ-optimal points?

• Black-box functions that depend on the leader’s decision?

Stay healthy!

21


	General Setting and Some Obstacles
	A "First-Relax-Then-Reformulate" Approach
	A European Gas Market Model with Chance Constraints
	Numerical Results

