On Convex Lower-Level Black-Box Constraints in Bilevel Optimization with an Application to Gas Market Models with Chance Constraints

Holger Heitsch, René Henrion, Thomas Kleinert, Martin Schmidt
December 1, 2021 - PGMO Days, Paris

Overview

General Setting and Some Obstacles

A "First-Relax-Then-Reformulate" Approach

A European Gas Market Model with Chance Constraints

Numerical Results

General Setting and Some Obstacles

$$
\begin{array}{ll}
\min _{x, y} & F(x, y) \\
\text { s.t. } & G(x, y) \leq 0 \\
& x \in \mathbb{R}^{n_{x}}, \quad y \in \mathbb{R}^{n_{y}} \\
& y \in S(x)
\end{array}
$$

Bilevel Optimization

$$
\begin{array}{ll}
\min _{x, y} & F(x, y) \\
\text { s.t. } & G(x, y) \leq 0 \\
& x \in \mathbb{R}^{n_{x}}, \quad y \in \mathbb{R}^{n_{y}} \\
& y \in S(x)
\end{array}
$$

$S(x)$ is the solution set of the convex lower-level problem

$$
S(x)=\underset{y}{\arg \min }\left\{f(x, y): g(x, y) \leq 0, y \in \mathbb{R}^{n y}\right\}
$$

$$
\begin{array}{ll}
\min _{x, y} & F(x, y) \\
\text { s.t. } & G(x, y) \leq 0 \\
& x \in \mathbb{R}^{n_{x}}, \quad y \in \mathbb{R}^{n_{y}} \\
& y \in S(x)
\end{array}
$$

$S(x)$ is the solution set of the convex lower-level problem

$$
S(x)=\underset{y}{\arg \min }\left\{f(x, y): g(x, y) \leq 0, y \in \mathbb{R}^{n_{y}}\right\}
$$

- NP-hard problem in general (Hansen, Jaumard, Savard 1992)
- Optimistic variant (Dempe 2002)

Black-Box Constraint in the Lower Level

A "small" extension

$$
S(x)=\underset{y}{\arg \min }\left\{f(x, y): g(x, y) \leq 0, b(y) \leq 0, y \in \mathbb{R}^{n_{y}}\right\}
$$

Black-Box Constraint in the Lower Level

A "small" extension

$$
S(x)=\underset{y}{\arg \min }\left\{f(x, y): g(x, y) \leq 0, b(y) \leq 0, y \in \mathbb{R}^{n_{y}}\right\}
$$

Assumption

The black-box function b is convex and for all $(x, y) \in\{(x, y): G(x, y) \leq 0, g(x, y) \leq 0\} \ldots$

1. we can evaluate the function $b(y)$,
2. we can evaluate the gradient $\nabla b(y)$,
3. the gradient is bounded, i.e., $\|\nabla b(y)\| \leq K$ for a fixed $K \in \mathbb{R}$.

Some Notation \& Single-Level Reformulation

- Shared constraint set

$$
\Omega:=\{(x, y): G(x, y) \leq 0, g(x, y) \leq 0, b(y) \leq 0\}
$$

Some Notation \& Single-Level Reformulation

- Shared constraint set

$$
\Omega:=\{(x, y): G(x, y) \leq 0, g(x, y) \leq 0, b(y) \leq 0\}
$$

- Projection onto the decision space of the leader

$$
\Omega_{u}:=\{x: \exists y \text { with }(x, y) \in \Omega\}
$$

Some Notation \& Single-Level Reformulation

- Shared constraint set

$$
\Omega:=\{(x, y): G(x, y) \leq 0, g(x, y) \leq 0, b(y) \leq 0\}
$$

- Projection onto the decision space of the leader

$$
\Omega_{u}:=\{x: \exists y \text { with }(x, y) \in \Omega\}
$$

- Feasible set of the lower-level problem for a fixed leader decision $x=\bar{x}$

$$
\Omega_{\ell}(\bar{x}):=\{y: g(\bar{x}, y) \leq 0, b(y) \leq 0\}
$$

Some Notation \& Single-Level Reformulation

- Shared constraint set

$$
\Omega:=\{(x, y): G(x, y) \leq 0, g(x, y) \leq 0, b(y) \leq 0\}
$$

- Projection onto the decision space of the leader

$$
\Omega_{u}:=\{x: \exists y \text { with }(x, y) \in \Omega\}
$$

- Feasible set of the lower-level problem for a fixed leader decision $x=\bar{x}$

$$
\Omega_{\ell}(\bar{x}):=\{y: g(\bar{x}, y) \leq 0, b(y) \leq 0\}
$$

- Optimal value function of the lower level

$$
\varphi(x)=\min _{y}\left\{f(x, y): g(x, y), b(y) \leq 0, y \in \mathbb{R}^{n_{y}}\right\}
$$

Some Notation \& Single-Level Reformulation

- Shared constraint set

$$
\Omega:=\{(x, y): G(x, y) \leq 0, g(x, y) \leq 0, b(y) \leq 0\}
$$

- Projection onto the decision space of the leader

$$
\Omega_{u}:=\{x: \exists y \text { with }(x, y) \in \Omega\}
$$

- Feasible set of the lower-level problem for a fixed leader decision $x=\bar{x}$

$$
\Omega_{\ell}(\bar{x}):=\{y: g(\bar{x}, y) \leq 0, b(y) \leq 0\}
$$

- Optimal value function of the lower level

$$
\varphi(x)=\min _{y}\left\{f(x, y): g(x, y), b(y) \leq 0, y \in \mathbb{R}^{n_{y}}\right\}
$$

- Single-level reformulation

$$
\begin{array}{ll}
\min _{x, y} & F(x, y) \\
\text { s.t. } & G(x, y) \leq 0, \quad g(x, y) \leq 0, \quad b(y) \leq 0 \\
& f(x, y) \leq \varphi(x) \\
& x \in \mathbb{R}^{n_{x}}, \quad y \in \mathbb{R}^{n_{y}}
\end{array}
$$

Obstacles and Pitfalls

- Main challenge: black-box constraint $b(y) \leq 0$
- Not given explicitly \rightarrow optimality conditions are not given explicitly as well

Obstacles and Pitfalls

- Main challenge: black-box constraint $b(y) \leq 0$
- Not given explicitly \rightarrow optimality conditions are not given explicitly as well
- Possible remedies
- Cutting plane techniques (Kelley 1960)
- Outer approximation (Duran, Grossmann 1986; Fletcher, Leyffer 1994)

Obstacles and Pitfalls

- Main challenge: black-box constraint $b(y) \leq 0$
- Not given explicitly \rightarrow optimality conditions are not given explicitly as well
- Possible remedies
- Cutting plane techniques (Kelley 1960)
- Outer approximation (Duran, Grossmann 1986; Fletcher, Leyffer 1994)
- But: $b(y) \leq 0$ can only by satisfied up to a prescribed tolerance
- Specifying the quality of solutions via ε - δ-optimality
- Global optimization (Locatelli, Schoen 2013)
- Bilevel optimization (Mitsos, Lemonidis, Barton 2008)

Definition

For $\delta=\left(\delta_{G}, \delta_{g}, \delta_{b}, \delta_{f}\right) \in \mathbb{R}_{\geq 0}^{m_{u}+m_{\ell}+2}$, a point $(\bar{x}, \bar{y}) \in \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{y}}$ is called δ-feasible for the bilevel problem, if $G(\bar{x}, \bar{y}) \leq \delta_{G}, g(\bar{x}, \bar{y}) \leq \delta_{g}, b(y) \leq \delta_{b}$, and $f(x, y) \leq \varphi(x)+\delta_{f}$ hold. Moreover, for $\varepsilon \geq 0$, a point $\left(x^{*}, y^{*}\right) \in \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{y}}$ is called ε - δ-optimal for the bilevel problem, if it is δ-feasible and if $F\left(x^{*}, y^{*}\right) \leq F^{*}+\varepsilon$ holds, with F^{*} denoting the optimal objective function value of the bilevel problem.

Definition

For $\delta=\left(\delta_{G}, \delta_{g}, \delta_{b}, \delta_{f}\right) \in \mathbb{R}_{\geq 0}^{m_{u}+m_{\ell}+2}$, a point $(\bar{x}, \bar{y}) \in \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{y}}$ is called δ-feasible for the bilevel problem, if $G(\bar{x}, \bar{y}) \leq \delta_{G}, g(\bar{x}, \bar{y}) \leq \delta_{g}, b(y) \leq \delta_{b}$, and $f(x, y) \leq \varphi(x)+\delta_{f}$ hold. Moreover, for $\varepsilon \geq 0$, a point $\left(x^{*}, y^{*}\right) \in \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{y}}$ is called ε - δ-optimal for the bilevel problem, if it is δ-feasible and if $F\left(x^{*}, y^{*}\right) \leq F^{*}+\varepsilon$ holds, with F^{*} denoting the optimal objective function value of the bilevel problem.

- A δ-feasible point (\bar{x}, \bar{y}) is $\delta_{f}-\left(\delta_{g}, \delta_{b}\right)$-optimal for the lower level with fixed $x=\bar{x}$
- Assume f and g pose no challenges \rightarrow choose $\delta_{f}=\delta_{g}=0$
- Assume F and G pose no challenges \rightarrow we can obtain 0 - δ-optimal solutions with $\delta=\left(0,0, \delta_{b}, 0\right)$

0 - δ-optimal solutions with $\delta=\left(0,0, \delta_{b}, 0\right)$?

- Consider the relaxed lower-level problem

$$
\min _{y \in \mathbb{R}^{n y}} f(\bar{x}, y) \quad \text { s.t. } \quad g(\bar{x}, y) \leq 0, b(y) \leq \delta_{b}
$$

- Denote the optimal value function by $\underline{\varphi}(x)$
- Relaxation property yields $\varphi(x) \leq \varphi(x)$ for all feasible $x \in \Omega_{\mathrm{u}}$

$0-\delta$-optimal solutions with $\delta=\left(0,0, \delta_{b}, 0\right) ?$

- Consider the relaxed lower-level problem

$$
\min _{y \in \mathbb{R}^{n y}} f(\bar{x}, y) \quad \text { s.t. } \quad g(\bar{x}, y) \leq 0, b(y) \leq \delta_{b}
$$

- Denote the optimal value function by $\underline{\varphi}(x)$
- Relaxation property yields $\underline{\varphi}(x) \leq \varphi(x)$ for all feasible $x \in \Omega_{u}$
- First-relax-then-reformulate leads to a single-level problem with $f(x, y) \leq \underline{\varphi}(x)$
- If $\varphi(x)<\varphi(x)$ holds for any $x \in \Omega_{\mathrm{u}}$, this single-level reformulation is not a relaxation of the original single-level reformulation

$0-\delta$-optimal solutions with $\delta=\left(0,0, \delta_{b}, 0\right) ?$

- Consider the relaxed lower-level problem

$$
\min _{y \in \mathbb{R}^{n y}} f(\bar{x}, y) \quad \text { s.t. } \quad g(\bar{x}, y) \leq 0, b(y) \leq \delta_{b}
$$

- Denote the optimal value function by $\underline{\varphi}(x)$
- Relaxation property yields $\underline{\varphi}(x) \leq \varphi(x)$ for all feasible $x \in \Omega_{u}$
- First-relax-then-reformulate leads to a single-level problem with $f(x, y) \leq \underline{\varphi}(x)$
- If $\varphi(x)<\varphi(x)$ holds for any $x \in \Omega_{\mathrm{u}}$, this single-level reformulation is not a relaxation of the original single-level reformulation
- It is not clear whether and how ε - δ-optimality can be guaranteed

$0-\delta$-optimal solutions with $\delta=\left(0,0, \delta_{b}, 0\right) ?$

- Consider the relaxed lower-level problem

$$
\min _{y \in \mathbb{R}^{n y}} f(\bar{x}, y) \quad \text { s.t. } \quad g(\bar{x}, y) \leq 0, b(y) \leq \delta_{b}
$$

- Denote the optimal value function by $\underline{\varphi}(x)$
- Relaxation property yields $\underline{\varphi}(x) \leq \varphi(x)$ for all feasible $x \in \Omega_{u}$
- First-relax-then-reformulate leads to a single-level problem with $f(x, y) \leq \underline{\varphi}(x)$
- If $\varphi(x)<\varphi(x)$ holds for any $x \in \Omega_{\mathrm{u}}$, this single-level reformulation is not a relaxation of the original single-level reformulation
- It is not clear whether and how ε - δ-optimality can be guaranteed

Can we hope for the δ-feasible points with $\delta=\left(0,0, \delta_{b}, 0\right)$?

A "First-Relax-Then-Reformulate"
Approach

A "First-Relax-Then-Reformulate" Approach

- Block-box constraint $b(y) \geq 0$ is convex
- Construct a sequence of linear outer approximations $\left(E^{r}, e^{r}\right)_{r \in \mathbb{N}}$ of the black-box constraint $b(y) \leq 0$ with the property

$$
\left\{y \in \mathbb{R}^{n_{y}}: b(y) \leq 0\right\} \subseteq\left\{y \in \mathbb{R}^{n_{y}}: E^{r+1} y \leq e^{r+1}\right\} \subseteq\left\{y \in \mathbb{R}^{n_{y}}: E^{r} y \leq e^{r}\right\}
$$

A "First-Relax-Then-Reformulate" Approach

- Block-box constraint $b(y) \geq 0$ is convex
- Construct a sequence of linear outer approximations $\left(E^{r}, e^{r}\right)_{r \in \mathbb{N}}$ of the black-box constraint $b(y) \leq 0$ with the property

$$
\left\{y \in \mathbb{R}^{n_{y}}: b(y) \leq 0\right\} \subseteq\left\{y \in \mathbb{R}^{n_{y}}: E^{r+1} y \leq e^{r+1}\right\} \subseteq\left\{y \in \mathbb{R}^{n_{y}}: E^{r} y \leq e^{r}\right\}
$$

- For a given upper-level solution $\bar{x} \in \Omega_{u}$ and $r \in \mathbb{N}$, the adapted lower-level problem reads

$$
\min _{y \in \mathbb{R}^{n y}} f(\bar{x}, y) \quad \text { s.t. } \quad g(\bar{x}, y) \leq 0, E^{r} y \leq e^{r}
$$

- This is a relaxation of the original lower-level problem

A "First-Relax-Then-Reformulate" Approach

- Block-box constraint $b(y) \geq 0$ is convex
- Construct a sequence of linear outer approximations $\left(E^{r}, e^{r}\right)_{r \in \mathbb{N}}$ of the black-box constraint $b(y) \leq 0$ with the property

$$
\left\{y \in \mathbb{R}^{n_{y}}: b(y) \leq 0\right\} \subseteq\left\{y \in \mathbb{R}^{n_{y}}: E^{r+1} y \leq e^{r+1}\right\} \subseteq\left\{y \in \mathbb{R}^{n_{y}}: E^{r} y \leq e^{r}\right\}
$$

- For a given upper-level solution $\bar{x} \in \Omega_{u}$ and $r \in \mathbb{N}$, the adapted lower-level problem reads

$$
\min _{y \in \mathbb{R}^{n} y} f(\bar{x}, y) \quad \text { s.t. } \quad g(\bar{x}, y) \leq 0, E^{r} y \leq e^{r}
$$

- This is a relaxation of the original lower-level problem
- $\underline{\varphi}^{r}(x)$: optimal value function
- Assumption: Slater's constraint qualification holds

A "First-Relax-Then-Reformulate" Approach

- Block-box constraint $b(y) \geq 0$ is convex
- Construct a sequence of linear outer approximations $\left(E^{r}, e^{r}\right)_{r \in \mathbb{N}}$ of the black-box constraint $b(y) \leq 0$ with the property

$$
\left\{y \in \mathbb{R}^{n_{y}}: b(y) \leq 0\right\} \subseteq\left\{y \in \mathbb{R}^{n_{y}}: E^{r+1} y \leq e^{r+1}\right\} \subseteq\left\{y \in \mathbb{R}^{n_{y}}: E^{r} y \leq e^{r}\right\}
$$

- For a given upper-level solution $\bar{x} \in \Omega_{u}$ and $r \in \mathbb{N}$, the adapted lower-level problem reads

$$
\min _{y \in \mathbb{R}^{n} y} f(\bar{x}, y) \quad \text { s.t. } \quad g(\bar{x}, y) \leq 0, E^{r} y \leq e^{r}
$$

- This is a relaxation of the original lower-level problem
- $\underline{\varphi}^{r}(x)$: optimal value function
- Assumption: Slater's constraint qualification holds

Proposition

For every $r \in \mathbb{N}$ and every upper-level decision $x \in \Omega_{u}$, it holds

$$
\underline{\varphi}^{r}(x) \leq \underline{\varphi}^{r+1}(x) \leq \varphi(x)
$$

A "First-Relax-Then-Reformulate" Approach

Modified variant of the single-level reformulation

$$
\begin{array}{cl}
\min _{x, y} & F(x, y) \\
\text { s.t. } & G(x, y) \leq 0, \quad g(x, y) \leq 0 \\
& E^{r} y \leq e^{r} \\
& f(x, y) \leq \varphi^{r}(x) \\
& x \in \mathbb{R}^{n_{x}}, \quad y \in \mathbb{R}^{n_{y}}
\end{array}
$$

A "First-Relax-Then-Reformulate" Approach

Modified variant of the single-level reformulation

$$
\begin{array}{ll}
\min _{x, y} & F(x, y) \\
\text { s.t. } & G(x, y) \leq 0, \quad g(x, y) \leq 0 \\
& E^{r} y \leq e^{r} \\
& f(x, y) \leq \underline{\varphi}^{r}(x) \\
& x \in \mathbb{R}^{n_{x}}, \quad y \in \mathbb{R}^{n_{y}}
\end{array}
$$

Feasibility problem

$$
\begin{array}{ll}
\min _{x, y, s} & s \\
\text { s.t. } & G(x, y) \leq 0, \quad g(x, y) \leq 0 \\
& E^{r} y \leq e^{r} \\
& f(x, y) \leq \underline{\varphi}^{r}(x)+s \\
& x \in \mathbb{R}^{n_{x}}, \quad y \in \mathbb{R}^{n_{y}}
\end{array}
$$

```
Algorithm 1 "First-Relax-Then-Reformulate".
    Choose \(\delta_{b}>0\), set \(r=0\), \(s=0, \chi=\infty, E^{0}=[0 \ldots 0] \in \mathbb{R}^{1 \times n_{y}}, e^{0}=0 \in \mathbb{R}\).
    while \(\chi>\delta_{b}\) or \(s>0\) do
    Construct \(E^{r+1}\) and \(e^{r+1}\)
    if the modified variant of the single-level reformulation is feasible then
            Solve this problem to obtain \(\left(x^{r+1}, y^{r+1}\right)\) and set \(s=0\).
    else if the feasibility problem is feasible then
            Solve this problem to obtain \(\left(x^{r+1}, y^{r+1}, s\right)\).
        else
            Return "The original problem is infeasible.".
        end if
        Set \(r \leftarrow r+1\) and \(\chi=b\left(y^{r}\right)\).
    end while
    \(\operatorname{Return}(\bar{x}, \bar{y})=\left(x^{r}, y^{r}\right)\).
```

```
Algorithm 2 "First-Relax-Then-Reformulate".
    Choose \(\delta_{b}>0\), set \(r=0, s=0, \chi=\infty, E^{0}=[0 \ldots 0] \in \mathbb{R}^{1 \times n_{y}}, e^{0}=0 \in \mathbb{R}\).
    while \(\chi>\delta_{b}\) or \(s>0\) do
        Construct \(E^{r+1}\) and \(e^{r+1}\)
    if the modified variant of the single-level reformulation is feasible then
            Solve this problem to obtain \(\left(x^{r+1}, y^{r+1}\right)\) and set \(s=0\).
    else if the feasibility problem is feasible then
            Solve this problem to obtain \(\left(x^{r+1}, y^{r+1}, s\right)\).
        else
            Return "The original problem is infeasible.".
        end if
        Set \(r \leftarrow r+1\) and \(\chi=b\left(y^{r}\right)\).
    end while
    Return \((\bar{x}, \bar{y})=\left(x^{r}, y^{r}\right)\).
```

Theorem: If Algorithm 1 terminates, then (\bar{x}, \bar{y}) is $\left(0,0, \delta_{b}, 0\right)$-feasible for original bilevel problem.

A European Gas Market Model with Chance Constraints

The European Entry-Exit Gas Market

Level 4 TSO cost-optimally transports the given nominations
Level 3 Traders nominate at a day-ahead market
Level 2 Traders book, i.e., sign mid- to long-term capacity contracts
Level 1 TSO announces technical capacities and booking price floors

The European Entry-Exit Gas Market

Level 4 TSO cost-optimally transports the given nominations
Level 3 Traders nominate at a day-ahead market
Level 2 Traders book, i.e., sign mid- to long-term capacity contracts
Level 1 TSO announces technical capacities and booking price floors

Grimm, Schewe, S., Zöttl (2019)

- Four-level modeling of the European entry-exit gas market
- Identification of assumptions that allow to simplify the model
- Perfect competition \rightarrow reduction to a bilevel model

$$
\begin{aligned}
\max _{q^{\text {Tc }}, \underline{m}^{\text {book }}, \pi, q} & \varphi^{u}\left(q^{\text {nom }}, q\right)=\sum_{t \in T}\left(\sum_{i \in \mathcal{P}_{-}} \int_{0}^{q_{i, t}^{\text {nom }}} P_{i, t}(s) d s-\sum_{i \in \mathcal{P}_{+}} c_{i}^{\text {var }} q_{i, t}^{\text {nom }}\right)-\sum_{t \in T} \sum_{a \in A} c^{\text {trans }}\left(q_{a, t}\right) \\
\text { s.t. } \quad & 0 \leq q_{u}^{\text {TC }}, 0 \leq \underline{\pi}_{u}^{\text {book }} \text { for all } u \in V_{+} \cup V_{-} \\
& \sum_{u \in V_{+} \cup V_{-}} \sum_{i \in \mathcal{P}_{u}} \underline{\pi}_{u}^{\text {book }} q_{i}^{\text {book }}=\sum_{t \in T} \sum_{a \in A} c^{\text {trans }}\left(q_{a, t}\right) \\
& (\pi, q) \in \mathcal{F}\left(q^{\text {nom }}\right) \\
& \left(q^{\text {book }}, q^{\text {nom }}\right) \in \arg \max \{\text { lower-level problem }\}
\end{aligned}
$$

$$
\begin{aligned}
\max _{q^{\text {book }, q^{\text {nom }}}} & \sum_{t \in T}\left(\sum_{i \in \mathcal{P}_{-}} \int_{0}^{q_{i, t}^{\text {nom }}} P_{i, t}(s) \mathrm{ds}-\sum_{i \in \mathcal{P}_{+}} c_{i}^{\text {var }} q_{i, t}^{\text {nom }}\right)-\sum_{u \in V_{+} \cup V_{-}} \sum_{i \in \mathcal{P}_{u}} \underline{\pi}_{u}^{\text {book }} q_{i}^{\text {book }} \\
\text { s.t. } & \sum_{i \in \mathcal{P}_{u}} q_{i}^{\text {book }} \leq q_{u}^{\text {TC }} \quad \text { for all } u \in V_{+} \cup V_{-} \\
& 0 \leq q_{i, t}^{\text {nom }} \leq q_{i}^{\text {book }} \quad \text { for all } i \in \mathcal{P}_{-} \cup \mathcal{P}_{+}, t \in T \\
& \sum_{i \in \mathcal{P}_{-}} q_{i, t}^{\text {nom }}-\sum_{i \in \mathcal{P}_{+}} q_{i, t}^{\text {nom }}=0 \quad \text { for all } t \in T
\end{aligned}
$$

Probabilistic Extension

- In reality, exit players $i \in \mathcal{P}$ - nominate quantities $q_{i, t}^{\text {nom }}$ without exactly knowing the actual load $\xi_{i, t}$
- Load vector $\xi=\left(\xi_{i, t}\right)_{i \in \mathcal{P}_{-}, t \in T}$ with log-concave cumulative distribution function
- In particular: $\xi \sim \mathcal{N}(m, \Sigma)$
- Modeling assumption: the TSO imposes a fee μ on the exit players $i \in \mathcal{P}_{-}$to ensure that the realized loads are covered up to a specified safety level $p \in[0,1]$
- Joint (over all times and exit players) probabilistic constraint

$$
\mathbb{P}\left(\xi_{i, t} \leq q_{i, t}^{\text {nom }} \text { for all } i \in \mathcal{P}_{-}, t \in T\right) \geq p
$$

- Log-concavity of the Gaussian distribution function implies that the log-transformed probabilistic load coverage constraint

$$
h\left(q_{-}^{\text {nom }}\right):=\log p-\log \mathbb{P}\left(\xi_{i, t} \leq q_{i, t}^{\text {nom }} \text { for all } i \in \mathcal{P}_{-}, t \in T\right) \leq 0
$$

is convex

Back to the "First-Relax-Then-Reformulate" Approach

In iteration r, the lower-level relaxation reads

$$
\begin{aligned}
\underset{q^{\text {book }, q^{\text {nom }}}}{\max } & \sum_{t \in T}\left(\sum_{i \in \mathcal{P}_{-}} \int_{0}^{a_{i, t}^{\text {nom }}} P_{i, t}(s) \mathrm{ds}-\sum_{i \in \mathcal{P}_{+}} c_{i}^{\text {var }} q_{i, t}^{\text {nom }}\right)-\sum_{u \in V_{+} \cup V_{-}} \sum_{i \in \mathcal{P}_{u}} \underline{\pi}_{u}^{\text {book }} q_{i}^{\text {book }} \\
\text { s.t. } & \sum_{i \in \mathcal{P}_{u}} q_{i}^{\text {book }} \leq q_{u}^{\text {TC }}, \quad u \in V_{+} \cup V_{-} \\
& 0 \leq q_{i, t}^{\text {nom }} \leq q_{i}^{\text {book }}, \quad i \in \mathcal{P}_{+} \cup \mathcal{P}_{-}, t \in T \\
& \sum_{i \in \mathcal{P}_{-}} q_{i, t}^{\text {nom }}-\sum_{i \in \mathcal{P}_{+}} q_{i, t}^{\text {nom }}=0, \quad t \in T \\
& h\left(q_{-}^{j}\right)+\nabla_{q_{-}^{\text {nom }}} h\left(q_{-}^{j}\right)^{\top}\left(q_{-}^{\text {nom }}-q_{-}^{j}\right) \leq 0, \quad j=1, \ldots, r
\end{aligned}
$$

Back to the "First-Relax-Then-Reformulate" Approach

- This lower-level problem is convex and satisfies Slater's CQ
- Take its KKT conditions \rightarrow MPCC as a single-level reformulation
- Linearize the KKT complementarity conditions using binary variables and big-Ms
- Single-level reformulation is a mixed-integer and concave maximization problem with bilinear (and thus nonconvex) equality constraints
- Can be solved with spatial branching ...
- ... but it's challenging!
- See the paper for the details
- Verification of Slater's CQ
- Provably correct big-Ms
- Further quantile and other cuts
- Further bounding techniques to obtain ex-post optimality certificates

Numerical Results

Numerical Results

p	$\begin{gathered} \text { Bisection } \\ \hline \text { Runtime } \end{gathered}$	Bounding		δ-Feasibility		Total		
		\#lter.	Runtime	\#lter.	Runtime	\#Iter.	Runtime	Gap
0.60	12.13	32	36.80	10	28.97	42	77.9	0.001
0.65	14.15	28	32.00	16	40.71	44	86.86	0.001
0.70	11.13	26	29.70	13	39.70	39	80.53	0.001
0.75	9.04	25	28.55	6	14.19	31	51.78	0.002
0.80	7.98	25	29.06	4	6.26	29	43.3	0.005
0.85	11.08	21	24.01	3	7.41	24	42.5	0.006
0.90	11.05	23	26.34	8	27.52	31	64.91	0.017
0.95	5.96	24	27.99	6	14.14	30	48.09	0.010
0.96	7.56	22	24.56	3	4.17	25	36.29	0.011
0.97	6.94	21	23.96	4	9.20	25	40.10	0.015
0.98	4.63	25	93.68	9	106.31	34	204.62	0.032
0.99	6.96	26	29.76	10	1250.65	36	1287.37	0.187

Total Welfare and Price of Load Coverage

- Bilevel problems with black-box constraint in the lower level
- Algorithm to compute δ-feasible points
- Relevant application for chance-constrained modeling of the EU gas market
- High-quality solutions in practice

SCAN ME

- Bilevel problems with black-box constraint in the lower level

- Algorithm to compute δ-feasible points
- Relevant application for chance-constrained modeling of the EU gas market
- High-quality solutions in practice
- Algorithms for ε - δ-optimal points?
- Black-box functions that depend on the leader's decision?

SCAN ME

- Bilevel problems with black-box constraint in the lower level

SCAN ME
Stay healthy!

