Mixed-Integer Programming Techniques for the Minimum Sum-of-Squares Clustering Problem

Martin Schmidt

💟 @schmaidt

Séminaire du GERAD | February 24, 2022

The people who really did the work ...

Jan Pablo Burgard | Carina Moreira Costa

Christopher Hojny | Thomas Kleinert

- 1. Motivation & Introduction
- 2. Two MINLP Formulations
- 3. Mixed-Integer Programming Techniques
- 3.1 Cutting Planes
- 3.2 Propagation
- 3.3 Branching Rules
- 3.4 Primal Heuristics
- 4. Numerical Results

Motivation & Introduction

Given

- *n* data points in \mathbb{R}^d : $p \in P \subset \mathbb{R}^d$, |P| = n
- $\cdot 2 \le k \le n$ clusters

Given

- *n* data points in \mathbb{R}^d : $p \in P \subset \mathbb{R}^d$, |P| = n
- $\cdot 2 \le k \le n$ clusters

Task

Find ...

- $\cdot\,$ an assignment for every data point to exactly one cluster
- $\cdot\,$ and a representative for every cluster

Given

- *n* data points in \mathbb{R}^d : $p \in P \subset \mathbb{R}^d$, |P| = n
- $2 \le k \le n$ clusters

Task

Find ...

- $\cdot\,$ an assignment for every data point to exactly one cluster
- $\cdot\,$ and a representative for every cluster

Key problem in unsupervised machine learning

Find k centroids c^{j} , j = 1, ..., k, that solve

$$\min_{c} h(P,c), \quad c = (c^{j})_{j=1,\ldots,k},$$

Find k centroids c^{j} , j = 1, ..., k, that solve

$$\min_{c} h(P,c), \quad c = (c^{j})_{j=1,\ldots,k},$$

with

$$h(P,c) = \sum_{j=1}^{k} \sum_{p \in S_{i}} ||p - c^{i}||_{2}^{2}$$

6

- The components of *p* are features of a measurement
 - gender
 - age
 - income
 - ...

- The components of p are features of a measurement
 - gender
 - age
 - income
 - ...

Many Applications

- Data analysis: Cuesta-Albertos and Fraiman (2007), Sangalli et al. (2010)
- Market segmentation: Chen et al. (1998)
- Bio informatics: Datta and Datta (2003)
- Economics: He et al. (2007)
- Social science: Han (2022).

The problem is NP-hard, even in two dimensions

- Aloise et al. (2009)
- Dasgupta (2007)
- Mahajan et al. (2012)

The problem is NP-hard, even in two dimensions

- Aloise et al. (2009)
- Dasgupta (2007)
- Mahajan et al. (2012)

Many applications in practice only use heuristic approaches

• *k*-means clustering: MacQueen (1967), Lloyd (1982)

A Slide Stolen from Daniel Aloise

- Convexity is an important feature in optimization.
- Convexity means that global optimality can be obtained via local optimizers.
- Global optimality is particularly important for clustering.
 - As an unsupervised ML task, results usually require interpretation from domain experts.
 - Such interpretation can be completely erroneous in case the analyzed solution is far from the global optimum.
- Hence, a convex clustering model is a guarantee that the sole optimal solution is the best and the right one for posterior clustering analysis.

Global Optimality

- There are convex variants of the clustering problem
 - Convex fuzzy *k*-medoids clustering: Aloise et al. (2020)
- But: The MSSC problem is not convex!

Global Optimality

- There are convex variants of the clustering problem
 - Convex fuzzy *k*-medoids clustering: Aloise et al. (2020)
- But: The MSSC problem is not convex!

A Short History of Solving the Problem to Global Optimality

- First branch-and-bound method: Fukunaga et al. (1975)
- Refinements: Diehr (1985) and Brusco (2006)
- \cdot Branch-and-bound with RLT: Sherali and Desai (2005) \rightarrow Aloise and Hansen (2011)
- Symmetry breaking techniques: Plastria (2002), Sherali and Desai (2005)
- Column generation: Merle et al. (1999), Aloise et al. (2012)
- Benders: Floudas et al. (1989) and Tan et al. (2007)
- Conic reformulations: Prasad and Hanasusanto (2018)
- Voronoi diagrams: Tîrnăucă et al. (2018)
- SDP basics: Peng and Wei (2007) and Peng and Xia (2005b)
- \cdot SDP branch-and-cut: Aloise and Hansen (2009) \rightarrow 202 data points
- SDP latest news: Piccialli et al. (2021) \rightarrow 4000 data points
- Reduced-space techniques: Hua et al. (2021) and Liberti and Manca (2021)

Two MINLP Formulations

MINLP Modeling

- Introduce binary variables $x_{pj} \in \{0, 1\}$ for $p \in P$ and $j \in [k] := \{1, \dots, k\}$
- Reformulate the function *h* as

$$h(P, c, x) = \sum_{j \in [k]} \sum_{p \in P} x_{pj} ||p - c^{j}||_{2}^{2}, \quad x = (x_{pj})_{p \in P}^{j \in [k]}$$

• Binary variables have the meaning

$$x_{pj} = \begin{cases} 1, & \text{if point } p \text{ is assigned to cluster } j \\ 0, & \text{otherwise} \end{cases}$$

• Every $p \in P$ should belong to exactly only one cluster

$$\sum_{j=1}^k x_{pj} = 1 \quad \text{for all} \quad p \in P$$

$$\begin{split} \min_{x,c} & \sum_{p \in P} \sum_{j \in [k]} x_{pj} \| p - c^{j} \|^{2} \\ \text{s.t.} & \sum_{j=1}^{k} x_{pj} = 1, \quad p \in P \\ & x_{pj} \in \{0,1\}, \quad p \in P, \ j \in [k] \\ & c^{j} \in B, \quad j \in [k] \end{split}$$

- Mixed-integer linear constraints
- \cdot Nonlinear (cubic) and nonconvex objective function

The Epigraph Reformulation: An MISOCP

$$\begin{split} \min_{x,c,\eta} & \sum_{p \in P} \sum_{j \in [k]} \eta_{pj} \\ \text{s.t.} & \eta_{pj} \ge \|p - c^{j}\|^{2} - M_{p}(1 - x_{pj}), \quad p \in P, \ j \in [k] \\ & \sum_{j \in [k]} x_{pj} = 1, \quad p \in P \\ & x_{pj} \in \{0, 1\}, \quad p \in P, \ j \in [k] \\ & c^{j} \in B, \quad j \in [k] \\ & \eta_{pj} \ge 0, \quad p \in P, \ j \in [k] \end{split}$$

- · M_p need to be chosen sufficiently large \rightarrow doable
- Objective function is linear now
- New quadratic but convex (conic) constraints

Mixed-Integer Programming Techniques

- First used in Sherali and Desai (2005) as well as Aloise et al. (2012)
- Main insight: optimal solutions never have empty clusters
- Clusters can never contains more than |P| k + 1 points

$$1 \le \sum_{p \in P} x_{pj} \le |P| - k + 1, \quad j \in [k]$$

- First used in Sherali and Desai (2005) as well as Aloise et al. (2012)
- Main insight: optimal solutions never have empty clusters
- Clusters can never contains more than |P| k + 1 points

$$1 \le \sum_{p \in P} x_{pj} \le |P| - k + 1, \quad j \in [k]$$

These cuts can also be localized ... but it didn't help much (more)

- · Outer approximation is a powerful technique for solving convex MINLPs
 - Duran and Grossmann (1986), Fletcher and Leyffer (1994), Quesada and Grossmann (1992)
- \cdot The constraints

$$\eta_{pj} \ge \|p - c^j\|^2 - M_p(1 - x_{pj}), \quad p \in P, \ j \in [k],$$

are nonlinear but convex

• 1st-order Taylor approximation at any point $(\bar{\eta}, \bar{c}, \bar{x})$ leads to global underestimators

$$\sum_{i=1}^{d} 2\bar{c}_{i}^{i}c_{i}^{i} - 2p_{i}c_{i}^{j} + (p_{i})^{2} - (\bar{c}_{i}^{j})^{2} - \eta_{pj} - M_{p}(1 - x_{pj}) \leq 0, \quad p \in P, \ j \in [k]$$

Propagation

- Suppose we are at a node of the branch-and-bound tree
- Branching decisions and further reductions
 - · Some variables might have been fixed or their bounds have been tightened
- Aim of propagation
 - Find further variable fixings or bound tightenings that are valid at the current node

Propagation

- · Suppose we are at a node of the branch-and-bound tree
- Branching decisions and further reductions
 - · Some variables might have been fixed or their bounds have been tightened
- Aim of propagation
 - Find further variable fixings or bound tightenings that are valid at the current node

Challenge

Every assignment of x-variables that satisfies

$$\sum_{j\in[k]} x_{pj} = 1, \quad p \in P,$$

can be extended to a feasible point.

 \rightarrow Useful propagation mechanisms need to exclude assignments that cannot be optimal!

- $P_j \subseteq P$: set of all $p \in P$ such that x_{pj} is fixed to 1 at the current node
- $P'_{i} \subseteq P$: set of all *p* such that x_{pi} has not been fixed to 0 yet
- Note: $P_j \subseteq P'_j$
- $\cdot \underline{z}$ and \overline{z} : lower and upper bound on z at the current node
- For $\emptyset \neq Q \subseteq P$, the optimal choice for its centroid is the barycenter

$$\mathcal{C}(Q) := \frac{1}{|Q|} \sum_{p \in Q} p$$

 $\cdot\,$ The corresponding loss function reads

$$\mathcal{D}(Q) = \sum_{p \in Q} \|p - \mathcal{C}(Q)\|^2$$

- For sets $Q \subseteq Q' \subseteq P$, we have $\mathcal{D}(Q) \leq \mathcal{D}(Q')$
- Lower bound on the objective is given by $\sum_{j=1}^{k} \mathcal{D}(P_j)$

- For sets $Q \subseteq Q' \subseteq P$, we have $\mathcal{D}(Q) \leq \mathcal{D}(Q')$
- Lower bound on the objective is given by $\sum_{j=1}^{k} \mathcal{D}(P_j)$

It's different for the epigraph reformulation

- Consider a pair $(p, j) \in P \times [k]$
- If $p \notin P'_j$ and $\underline{\eta}_{pj} > 0$ holds, the current node can be pruned
- \cdot If $p \notin P'_j$ and $\underline{\eta}_{pj} = 0$, we can fix η_{pj} to 0

- Consider $P'_j \setminus P_j = \{p^1, \dots, p^s\}$ such that $p^1_i \le p^2_i \le \dots \le p^s_i$
- For each $r \in [s]_0$ with $[s]_0 := [s] \cup \{0\}$, we compute $\gamma^{j,r} = \mathcal{C}(P_j \cup \{p^1, \dots, p^r\})$.

- Consider $P'_j \setminus P_j = \{p^1, \dots, p^s\}$ such that $p^1_i \le p^2_i \le \dots \le p^s_i$
- For each $r \in [s]_0$ with $[s]_0 := [s] \cup \{0\}$, we compute $\gamma^{j,r} = \mathcal{C}(P_j \cup \{p^1, \dots, p^r\})$.

A valid lower bound on c_i^j is given by $\min_{r \in [s]_0} \gamma_i^{j,r}$.

- Consider $P'_j \setminus P_j = \{p^1, \dots, p^s\}$ such that $p^1_i \le p^2_i \le \dots \le p^s_i$
- For each $r \in [s]_0$ with $[s]_0 := [s] \cup \{0\}$, we compute $\gamma^{j,r} = \mathcal{C}(P_j \cup \{p^1, \dots, p^r\})$.

A valid lower bound on c_i^j is given by $\min_{r \in [s]_0} \gamma_i^{j,r}$.

Lemma

A valid upper bound on c_i^j is given by $\max_{r \in [s]_0} C(P_j \cup \{p^{s-r}, \ldots, p^s\})_i$.

There exists an optimal solution of MSSC with clusters P_1, \ldots, P_k such that for each $j \in [k]$, we have $conv(P_j) \cap P = P_j$.

There exists an optimal solution of MSSC with clusters P_1, \ldots, P_k such that for each $j \in [k]$, we have $conv(P_j) \cap P = P_j$.

The propagator

- Compute $conv(P_j)$ for each $j \in [k]$
- Consider now a point $p \in P \cap \operatorname{conv}(P_j)$
- If $p \notin P'_j$ holds, we can prune the current node
- Otherwise, *x_{pj}* can be fixed to 1

Attention: $conv(P_j)$ can have $\Omega(2^d)$ many facets!

Let $P_1 \cup \cdots \cup P_k$ be a partition of the finite set $P \subseteq \mathbb{R}^d$. Suppose $conv(P_j) \cap P = P_j$ holds for each $j \in [k]$. Then, for every $q \in P \setminus P_j$,

 $q + \operatorname{cone}\{-(p-q) \colon p \in P_j\} \subseteq P \setminus P_j.$

Let $P_1 \cup \cdots \cup P_k$ be a partition of the finite set $P \subseteq \mathbb{R}^d$. Suppose $conv(P_j) \cap P = P_j$ holds for each $j \in [k]$. Then, for every $q \in P \setminus P_j$,

 $q + \operatorname{cone}\{-(p-q) \colon p \in P_j\} \subseteq P \setminus P_j.$

If q is not contained in the red cluster, none of the black points can be contained in the red cluster. Assigning the white points to the red cluster is still possible.

- Goal: Fix variables x_{pj} , $(p, j) \in P \times [k]$, to 0
- Centroid's bounding box $B_j = \{y \in \mathbb{R}^d : \underline{c}_i^j \le y_i \le \overline{c}_i^j, i \in [d]\}$
- Minimum/maximum distance of p to j

$$D_{j,p}^{\min} = \min \{ \|p - x\| \colon x \in B_j \}, \quad D_{j,p}^{\max} = \max \{ \|p - x\| \colon x \in B_j \}$$

- Easy to compute since B_j is a box
- · Key insight: a point is assigned to a centroid of minimum distance in an optimal solution
- If there exists $j' \in [k]$ with $D_{j',p}^{max} < D_{j,p}^{min}$, x_{pj} can be set to 0

- · Suppose a node of the branch-and-bound tree has been solved
- Branching rules are used to split the problem so that two new subproblems are created
- $\cdot\,$ Typically guided by the solution of the node's relaxation
- You want a primer on that topic? Achterberg et al. (2005)

- · Suppose a node of the branch-and-bound tree has been solved
- · Branching rules are used to split the problem so that two new subproblems are created
- Typically guided by the solution of the node's relaxation
- You want a primer on that topic? Achterberg et al. (2005)

Intuition for what follows

- Interpret a fractional value x_{pj} as the probability that a point $p \in P$ is assigned to cluster $j \in [k]$
- · Similar ideas but often (too) expensive: Gilpin and Sandholm (2011)

- + Let the relaxed solution \bar{x} be fractional
- Let \bar{X} be the set of all branching candidates

$$\bar{X} := \{ \bar{x}_{pj} \colon \bar{x}_{pj} \in (0, 1), \ p \in P, \ j \in [k] \}$$

• Due to

$$\sum_{j=1}^k x_{pj} = 1, \quad p \in P,$$

the value of \bar{x}_{pj} can be seen as a probability of point p to belong to cluster j

- Idea: select the point p for which the probabilities for each cluster are almost the same
- · Why? It reduces the "uncertainty" in the sub-tree

Most unclear situation (homogeneous information setting)

$$ar{x}_{pj} = rac{1}{k}$$
 for all $j \in [k]$

- · Let's use the Shannon entropy (Shannon, 1948)
- + Consider the variables $ar{x}_{pj}\inar{X}$
- Entropy of point p with probabilities \bar{x}_{pj} , $j \in [k]$, to be in cluster j:

$$H_p = -\sum_{j \in [k]} \bar{x}_{pj} \log_2(\bar{x}_{pj})$$

- Maximum entropy ($H_p = \log_2 k$) occurs in the case of homogeneous information
- Minimum entropy ($H_p = 0$) is obtained if there is a clear cluster assignment

- Find the point p^* corresponding to the fractional variable $\bar{x}_{p^*j^*} \in \bar{X}$ such that the entropy of point p^* is the maximal over all points with fractional variables
- · In other words: we search for the most uncertain assignment
- Formally

$$p^* \in \underset{\{p \in P: \ \bar{x}_{pj} \in \bar{X}, \ j \in [k]\}}{\arg \max} H_p$$

• For this point p^* , we branch on the first fractional variable \bar{x}_{p*j}

- Now a more geometric idea
- Rationale: clusters should be rather compact (opposed to being spread out)
- LP solution: centroid "suggestions" $c^{j}, j \in [k]$, and fractional variables $x_{pj} \in \overline{X}$
- Branching candidate: data point p and cluster j that are most apart from each other
- Formally:

$$(p^*, j^*) \in \underset{\{(p,j)\in P\times [k]: \ \overline{x}_{pj}\in \overline{X}\}}{\operatorname{arg max}} \|p-c^j\|$$

- Now a more geometric idea
- Rationale: clusters should be rather compact (opposed to being spread out)
- LP solution: centroid "suggestions" $c^{j}, j \in [k]$, and fractional variables $x_{pj} \in \overline{X}$
- Branching candidate: data point p and cluster j that are most apart from each other
- Formally:

$$(p^*, j^*) \in rgmax_{\{(p,j)\in P imes [k]: \ ar{x}_{pj}\in ar{X}\}} \|p-c^j\|$$

- If an optimal cluster is indeed compact \rightarrow the 0-subproblem contains an optimal solution
- Otherwise, the convexity propagator has the potential to fix additional variables that lie between p^* and the remaining points of cluster j^* in the 1-subproblem

Centrality Branching

- Idea of the distance branching rule
 - $\cdot\,$ tailored towards the extremes of compact vs. far spread-out clusters
- Centrality branching rule
 - $\cdot\,$ more balanced approach by selecting a point whose distance to a cluster is not too big
- Consider the LP solution with its suggestion for the centroids $c^{i}, j \in [k]$
- Idea: branch on the fractional variable x_{pj} corresponding to the data point p and cluster j that is lying in the center of the cloud of unassigned data points
- Cheap proxy: take the point p^* that is in the center of all centroids

$$p^* \in \underset{\{p \in P: \ \bar{x}_{pj} \in \bar{X}, j \in [k]\}}{\operatorname{arg\,min}} \sum_{j=1}^k \|p - c^j\|.$$

- + For p^* , we branch on the first fractional variable $\bar{x}_{p^*j^*}$
- If the distance of p^* to cluster j^* is not too small, convexity propagator may fix further data points to be contained in cluster j^* in the 1-subproblem
- 0-subproblem: cone propagation might fix some variables to 0

- · Well, just do what many practitioners do anyway: k-means clustering
- Lloyd (1982) and MacQueen (1967)
- Given: initial guess for the centroids
- Compute: assignment variables x
- + Fix these assignments \rightarrow compute new centroids
- ... iterate ...
- Initialization of first centroids with Maxmin heuristic
 - Gonzalez (1985) + Fränti and Sieranoja (2019)

- Proposed first by Sherali and Desai (2005)
- Fractional LP solution (\tilde{x}, \tilde{c})
- Round the fractional \tilde{x} -solution to the closest feasible binary solution \bar{x}
- Respect the decisions that have already been made: if a data point is already assigned to a cluster, it will remain in that cluster
- Ensure no empty clusters: for each $j \in [k]$ with $P_j = \emptyset$, find the point $\overline{p} \in P \setminus \bigcup_{j=1}^k P_j$ such that $\overline{p} \in \arg \max \left\{ \widetilde{x}_{pj} : p \in P \setminus \bigcup_{j=1}^k P_j \right\}$
- Then fix $\bar{x}_{\bar{p}j} = 1$
- For each data point $p \in P$ with $\tilde{x}_{pj}, j \in [k]$, not yet rounded, find a cluster j^* such that $\tilde{x}_{pj^*} \in \max{\{\tilde{x}_{pj}: j \in [k]\}}$
- Finally: compute centroids using the barycenter formula

• Intra-Variance of cluster j as the weighted value of the loss function restricted to cluster C_j

$$F_j = \frac{1}{|C_j|} \sum_{p \in C_j} ||p - \overline{c}^j||^2.$$

• Intra-Variance of cluster j as the weighted value of the loss function restricted to cluster C_j

$$F_j = \frac{1}{|C_j|} \sum_{p \in C_j} ||p - \overline{c}^j||^2.$$

• Joint centroid for a pair of clusters (C_{j_1}, C_{j_2})

$$c^{j_1 j_2} = \frac{1}{|C_{j_1}| + |C_{j_2}|} \sum_{p \in C_{j_1} \cup C_{j_2}} p$$

• Corresponding total loss

$$F_{j_1j_2} = \frac{1}{|C_{j_1}| + |C_{j_2}|} \sum_{p \in C_{j_1} \cup C_{j_2}} ||p - c^{j_1j_2}||^2$$

• Intra-Variance of cluster j as the weighted value of the loss function restricted to cluster C_j

$$F_j = \frac{1}{|C_j|} \sum_{p \in C_j} \|p - \overline{c}^j\|^2.$$

• Joint centroid for a pair of clusters (C_{j_1}, C_{j_2})

$$c^{j_1 j_2} = \frac{1}{|C_{j_1}| + |C_{j_2}|} \sum_{p \in C_{j_1} \cup C_{j_2}} p$$

Corresponding total loss

$$F_{j_1 j_2} = \frac{1}{|C_{j_1}| + |C_{j_2}|} \sum_{p \in C_{j_1} \cup C_{j_2}} \|p - c^{j_1 j_2}\|^2$$

• Candidate triplets

$$\Psi := \left\{ (C_{j_1}, C_{j_2}, C_{j_3}) \colon F_{j_1 j_2} < F_{j_3} \right\}$$

• Candidate triplets

$$\Psi := \left\{ (C_{j_1}, C_{j_2}, C_{j_3}) \colon F_{j_1 j_2} < F_{j_3} \right\}$$

- $(C_{j_1}, C_{j_2}, C_{j_3}) \in \Psi$: total loss of joined clusters C_{j_1}, C_{j_2} is smaller than total loss within cluster C_{j_3}
- Idea: join clusters C_{j_1}, C_{j_2} and split C_{j_3}
- New centroids of splitted cluster

$$(\tilde{c}, \tilde{c}') \in \operatorname*{arg\,max}_{p, p' \in C_{j_3}} \left\{ \|p - p'\|^2 \right\}$$

Numerical Results

- MINLP solver SCIP 7.0.3
- LP solver CPLEX 12.8
- All techniques are implemented as SCIP plugins in C/C++
- $\cdot\,$ Intel Xeon CPU E5-2699 v4 at 2.20 GHz (2 $\times\,$ 44 threads) and 756 GB RAM
- Time limit: 1h per instance
- Convex hull code: Qhull by Barber et al. (1996)

All codes and all data will be made available when the preprint is ready

Test Sets

Instance	Reference	n	d
Fisher150iris	Dua and Graff (2017) and Fisher (1936)	150	4
German22	Späth (1980)	22	2
German59	Späth (1980)	59	2
body-measurements	Heinz et al. (2003)	507	5
cities-coord-202	Grötschel (1991)	202	2
cities-coord-666	Grötschel (1991)	666	2
concrete-compressive	Dua and Graff (2017)	1030	8
glass-identification	Dua and Graff (2017)	214	9
image-segmentation	Dua and Graff (2017)	2310	19
padberg-rinaldi-hole-dri	Padberg and Rinaldi (1991)	2392	2
reinelt-hole-drilling	Reinelt (1991)	1060	2
ruspini	Ruspini (1970)	75	2
telugu-indian-vowel	Pal and Majumder (1977)	871	3
a1	Fränti and Sieranoja (2018)	3000	2
a2	Fränti and Sieranoja (2018)	5250	2
a3	Fränti and Sieranoja (2018)	7500	2
dim	Fränti and Sieranoja (2018)	1024	32
g2-2-30	Fränti and Sieranoja (2018)	2048	2
g2-2-50	Fränti and Sieranoja (2018)	2048	2
g2-2-70	Fränti and Sieranoja (2018)	2048	2
s1	Fränti and Sieranoja (2018)	5000	2
s2	Fränti and Sieranoja (2018)	5000	2
s3	Fränti and Sieranoja (2018)	5000	2
S4	Fränti and Sieranoja (2018)	5000	2
unbalance	Fränti and Sieranoia (2018)	6500	2

36

k = 2: Plain SCIP

Instance	n	d	Qua	d formulatio	n	Epi	graph formu	lation
			nodes	time	gap	nodes	time	gap
Fisher150iris	150	4	909913	3600.01	∞	18956	3600.0	170.24
German22	22	2	207026	900.31	0.00	1343	17.25	0.00
German59	59	2	203438	3600.01	∞	112482	3600.0	32.98
body-measurements	507	5	38934	3600.0	∞	8862	3600.01	3338.16
cities-coord-202	202	2	84088	3600.0	∞	30276	3600.0	284.64
cities-coord-666	666	2	16459	3600.0	∞	19784	3600.01	2886.05
concrete-compressive	1030	8	12496	3600.05	∞	8505	3600.01	79149.66
glass-identification	214	9	240834	3600.0	∞	12176	3600.0	1920.57
image-segmentation	2310	19	3026	3600.0	∞	2870	3600.03	8405.89
padberg-rinaldi-hole-dri	2392	2	2654	3600.05	∞	114594	3600.02	∞
reinelt-hole-drilling	1060	2	2265	3600.01	∞	235206	3600.39	∞
ruspini	75	2	874673	3600.02	∞	137981	3600.01	132.28
telugu-indian-vowel	871	3	846	3600.2	∞	13681	3600.02	5082.69
a1	3000	2	3024	3600.0	∞	88111	3600.01	∞
a2	5250	2	5338	3600.01	∞	67159	3600.01	∞
a3	7500	2	6852	3600.01	∞	41941	3600.02	∞
dim	1024	32	3175	3600.01	∞	738	3600.28	∞
g2-2-30	2048	2	13927	3600.27	∞	10273	3600.02	22444.38
g2-2-50	2048	2	11804	3600.02	∞	10837	3600.01	13433.08
g2-2-70	2048	2	2376	3600.01	∞	8235	3600.01	19192.83
s1	5000	2	5032	3600.02	∞	58633	3600.0	∞
s2	5000	2	5050	3600.04	∞	47121	3600.0	∞
s3	5000	2	5035	3600.03	∞	55728	3600.03	∞
s4	5000	2	5029	3600.01	∞	53218	3600.01	∞
unbalance	6500	2	6544	3600.0	∞	37468	3600.86	∞

37

k = 2: SCIP + Heuristics + Convexity & Cone Propagator

Instance	n	d	Quad	d formulation	ı	Epi	graph formu	lation
			nodes	time	gap	nodes	time	gap
Fisher150iris	150	4	1254550	3600.01	∞	38867	3600.0	114.71
German22	22	2	539	1.4	0.00	269	1.28	0.00
German59	59	2	2139	7.71	0.00	627	7.45	0.00
body-measurements	507	5	247712	3600.0	∞	10235	3600.0	1460.22
cities-coord-202	202	2	49373	142.42	0.00	4759	155.58	0.00
cities-coord-666	666	2	63323	773.03	0.00	3644	525.23	0.00
concrete-compressive	1030	8	962	3609.45	∞	6464	3600.0	31862.98
glass-identification	214	9	216426	3600.0	∞	12824	3600.0	877.58
image-segmentation	2310	19	2175	3600.0	∞	2193	3600.0	28016.73
padberg-rinaldi-hole-dri	2392	2	53	3600.03	∞	44395	3600.01	∞
reinelt-hole-drilling	1060	2	26	3600.06	∞	161496	3600.37	∞
ruspini	75	2	6875	15.21	0.00	549	10.29	0.00
telugu-indian-vowel	871	3	361	3600.18	∞	8627	3600.01	171.65
al	3000	2	340	3600.07	∞	40987	3600.0	∞
a2	5250	2	22	3600.02	∞	10912	3600.0	∞
a3	7500	2	219	3600.07	∞	5419	3600.0	∞
dim	1024	32	3318	3600.03	∞	1655	3600.01	∞
g2-2-30	2048	2	172536	3600.0	∞	6249	3460.79	0.00
g2-2-50	2048	2	205102	3600.0	∞	4509	3600.03	11.25
g2-2-70	2048	2	190472	3600.0	∞	3714	3600.0	44.85
s1	5000	2	206	3600.03	∞	15937	3600.07	∞
s2	5000	2	58	3600.1	∞	14702	3600.0	∞
s3	5000	2	70	3600.01	∞	14203	3600.05	∞
s4	5000	2	34	3600.16	∞	16303	3600.0	∞
unbalance	6500	2	24	3600.01	∞	20735	3600.8	∞

k = 2: SCIP + Heuristics + Barycenter Propagator

Instance	n	d	Qu	uad formulat	ion	Epi	graph formul	ation
		u	nodes	time	gap	nodes	time	gap
Fisher150iris	150	4	1291451	3600.06	390.75	36671	3600.0	133.79
German22	22	2	735	1.0	0.00	603	3.14	0.00
German59	59	2	298474	3600.0	60.67	181024	3302.02	0.00
body-measurements	507	5	175149	3600.0	4020.08	10707	3600.0	2023.87
cities-coord-202	202	2	209526	3600.0	182.11	53429	3600.0	135.06
cities-coord-666	666	2	6326	3600.0	2030.10	29584	3600.0	1624.17
concrete-compressive	1030	8	78715	3600.03	5124.69	5448	3600.01	18755.18
glass-identification	214	9	378677	3600.01	327.75	13634	3600.0	449.85
image-segmentation	2310	19	13938	3600.03	41771.35	251	3600.0	∞
padberg-rinaldi-hole-dri	2392	2	215038	3600.01	5111.74	115222	3600.01	∞
reinelt-hole-drilling	1060	2	548760	3600.01	1821.46	243529	3600.03	∞
ruspini	75	2	371336	3600.01	172.24	202409	3600.0	62.62
telugu-indian-vowel	871	3	482986	3600.01	1188.41	11452	3600.0	2802.01
al	3000	2	154455	3600.01	9892.16	76186	3600.02	∞
a2	5250	2	79802	3600.01	14609.94	28009	3600.01	∞
a3	7500	2	50747	3600.02	28536.14	8957	3600.02	∞
dim	1024	32	20279	3600.0	12806.54	938	3600.01	∞
g2-2-30	2048	2	68620	3600.0	10686.30	9677	3600.01	8018.12
g2-2-50	2048	2	69035	3600.01	8460.72	11622	3600.01	6694.39
g2-2-70	2048	2	75071	3600.0	6784.35	10224	3600.0	6502.58
s1	5000	2	78784	3600.02	29879.42	30042	3600.13	∞
s2	5000	2	82041	3600.01	18242.68	34579	3600.0	∞
s3	5000	2	87351	3600.0	17978.65	32344	3600.01	∞
s4	5000	2	87945	3600.0	17583.74	35208	3600.36	∞
unbalance	6500	2	70452	3600.01	5680.62	22020	3600.62	∞

39

k = 2: SCIP + Heuristics + Convexity & Cone & Barycenter Propagator

Instance	n	d	Qu	uad formulat	ion	Epi	graph formu	ation
		u	nodes	time	gap	nodes	time	gap
Fisher150iris	150	4	1333676	3600.01	180.59	47822	3600.0	84.02
German22	22	2	155	0.21	0.00	179	0.96	0.00
German59	59	2	509	0.98	0.00	631	7.57	0.00
body-measurements	507	5	316874	3600.0	3781.81	12521	3600.0	1281.91
cities-coord-202	202	2	3385	5.74	0.00	3954	139.4	0.00
cities-coord-666	666	2	2800	14.04	0.00	4116	562.66	0.00
concrete-compressive	1030	8	91207	3600.01	5087.22	5158	3600.01	18171.42
glass-identification	214	9	542435	3600.01	326.10	13759	3600.0	442.45
image-segmentation	2310	19	17008	3600.01	39499.81	257	3600.03	∞
padberg-rinaldi-hole-dri	2392	2	1469	3600.0	23.52	80303	3600.17	∞
reinelt-hole-drilling	1060	2	1788	3600.1	19.02	155237	3600.04	∞
ruspini	75	2	487	0.95	0.00	505	9.96	0.00
telugu-indian-vowel	871	3	28388	3600.15	60.12	7274	3600.01	143.63
al	3000	2	1718	3600.05	25.16	35274	3600.0	∞
a2	5250	2	936	3600.06	30.58	13296	3600.04	∞
a3	7500	2	886	3600.0	84.06	6954	3600.01	∞
dim	1024	32	21686	3600.05	12465.58	884	3600.01	∞
g2-2-30	2048	2	6383	114.73	0.00	5959	3600.02	7.10
g2-2-50	2048	2	14995	217.03	0.00	5967	3600.01	13.32
g2-2-70	2048	2	36329	370.0	0.00	2531	3600.01	19.68
s1	5000	2	2367	3600.07	244.12	13093	3600.01	∞
s2	5000	2	676	3600.01	173.69	15993	3600.0	∞
s3	5000	2	3971	3600.01	133.13	11323	3600.22	∞
s4	5000	2	4708	3600.02	102.62	23422	3600.01	∞
unbalance	6500	2	181	3600.02	∞	15874	3600.0	∞

40

k = 2: SCIP + Heuristics + Convexity & Cone & Barycenter Propagator + OA

Instance	n	d	Qu	uad formulat	ion	Epigraph formulation			
			nodes	time	gap	nodes	time	gap	
Fisher150iris	150	4	1333676	3600.01	180.59	62669	3600.0	63.93	
German22	22	2	155	0.21	0.00	247	1.29	0.00	
German59	59	2	509	0.98	0.00	571	7.03	0.00	
body-measurements	507	5	316874	3600.0	3781.81	11111	3600.03	1751.01	
cities-coord-202	202	2	3385	5.74	0.00	4146	158.78	0.00	
cities-coord-666	666	2	2800	14.04	0.00	5023	780.78	0.00	
concrete-compressive	1030	8	91207	3600.01	5087.22	4321	3600.01	14466.75	
glass-identification	214	9	542435	3600.01	326.10	14631	3600.0	305.74	
image-segmentation	2310	19	17008	3600.01	39499.81	904	3600.03	10007.79	
padberg-rinaldi-hole-dri	2392	2	1469	3600.0	23.52	481	3600.01	2079.74	
reinelt-hole-drilling	1060	2	1788	3600.1	19.02	606	3600.03	250.56	
ruspini	75	2	487	0.95	0.00	573	9.47	0.00	
telugu-indian-vowel	871	3	28388	3600.15	60.12	4932	3600.0	147.79	
al	3000	2	1718	3600.05	25.16	3645	3600.0	754130.50	
a2	5250	2	936	3600.06	30.58	691	3600.02	16336991.23	
a3	7500	2	886	3600.0	84.06	48	3600.07	26935734.14	
dim	1024	32	21686	3600.05	12465.58	452	3600.01	∞	
g2-2-30	2048	2	6383	114.73	0.00	6825	3600.02	3.23	
g2-2-50	2048	2	14995	217.03	0.00	5724	3600.01	16.97	
g2-2-70	2048	2	36329	370.0	0.00	4131	3600.01	29.80	
s1	5000	2	2367	3600.07	244.12	176	3600.07	1227922.26	
s2	5000	2	676	3600.01	173.69	180	3600.04	2062192.77	
s3	5000	2	3971	3600.01	133.13	159	3600.09	59440.31	
s4	5000	2	4708	3600.02	102.62	1352	3600.06	12472.41	
unbalance	6500	2	181	3600.02	∞	394	3600.11	336156.23	

Instance	n d		Qu	uad formulat	ion	Epigraph formulation			
		u	nodes	time	gap	nodes	time	gap	
Fisher150iris	150	4	1594034	3600.01	163.35	89287	3600.0	53.12	
German22	22	2	155	0.18	0.00	247	1.12	0.00	
German59	59	2	509	0.83	0.00	571	5.63	0.00	
body-measurements	507	5	374487	3600.01	3670.49	14984	3600.0	1609.83	
cities-coord-202	202	2	3383	5.4	0.00	4146	111.59	0.00	
cities-coord-666	666	2	2800	13.41	0.00	5023	648.54	0.00	
concrete-compressive	1030	8	99409	3600.01	5038.68	5290	3600.01	14466.75	
glass-identification	214	9	653118	3600.01	326.46	20036	3600.0	286.45	
image-segmentation	2310	19	18400	3600.0	38483.96	1200	3600.02	10007.79	
padberg-rinaldi-hole-dri	2392	2	1469	3600.02	23.52	598	3600.01	882.60	
reinelt-hole-drilling	1060	2	1788	3600.03	19.02	625	3600.02	250.56	
ruspini	75	2	487	0.92	0.00	573	7.89	0.00	
telugu-indian-vowel	871	3	28388	3600.15	60.12	6074	3600.0	132.42	
al	3000	2	1718	3600.04	25.16	7080	3600.0	754130.50	
a2	5250	2	936	3600.01	30.58	828	3600.0	3488806.65	
a3	7500	2	886	3600.05	84.06	49	3600.04	26935734.14	
dim	1024	32	24323	3600.03	12218.34	573	3600.0	∞	
g2-2-30	2048	2	6383	87.79	0.00	6989	2924.55	0.00	
g2-2-50	2048	2	14995	172.4	0.00	7800	3600.01	11.49	
g2-2-70	2048	2	36329	320.03	0.00	5514	3600.02	19.66	
s1	5000	2	2367	3600.0	244.12	183	3600.08	1124074.89	
s2	5000	2	676	3600.02	173.69	211	3600.04	2062192.77	
s3	5000	2	2815	3600.01	220.62	213	3600.13	12046.53	
s4	5000	2	2657	3600.01	182.74	1512	3600.02	11820.60	
unbalance	6500	2	181	3600.01	∞	461	3600.06	269814.70	

k = 2: SCIP + Heuristics + All Propagators + OA

k = 2: SCIP + Heuristics + All Propagators + OA + Entropy Branching

Instance	n	d	Qu	uad formulat	ion	E	pigraph forn	nulation
			nodes	time	gap	nodes	time	gap
Fisher150iris	150	4	1462878	3600.01	226.87	68847	3600.0	169.43
German22	22	2	357	0.43	0.00	155	0.69	0.00
German59	59	2	765	1.32	0.00	649	4.26	0.00
body-measurements	507	5	410938	3600.0	3632.71	18072	3600.0	1396.68
cities-coord-202	202	2	3541	5.47	0.00	3249	68.49	0.00
cities-coord-666	666	2	2604	11.45	0.00	5308	690.09	0.00
concrete-compressive	1030	8	104887	3600.0	5502.52	10227	3600.0	10001.54
glass-identification	214	9	650169	3600.07	567.57	26316	3600.0	304.25
image-segmentation	2310	19	22334	3600.02	51123.06	885	3600.03	9677.16
padberg-rinaldi-hole-dri	2392	2	1080	3600.0	32.60	748	3600.0	56479.73
reinelt-hole-drilling	1060	2	1857	3600.08	16.07	1243	3600.01	686.79
ruspini	75	2	1039	1.81	0.00	555	5.95	0.00
telugu-indian-vowel	871	3	160309	580.64	0.00	13930	3600.0	695.29
a1	3000	2	2863	3600.03	18.17	3496	3600.01	177852.67
a2	5250	2	936	3600.03	30.58	1677	3600.0	26840744.46
a3	7500	2	886	3600.03	84.06	1604	3600.0	1784421.45
dim	1024	32	11684	3600.0	12621.01	1488	3600.02	∞
g2-2-30	2048	2	6123	79.84	0.00	6399	2314.59	0.00
g2-2-50	2048	2	8169	3600.04	6.84	9044	3600.04	15.52
g2-2-70	2048	2	39249	455.03	0.00	6310	3600.03	32.64
s1	5000	2	2367	3600.0	244.12	1690	3600.02	91869.90
s2	5000	2	676	3600.02	173.69	433	3600.0	163413.35
s3	5000	2	2815	3600.01	220.62	173	3600.07	71533.78
s4	5000	2	2657	3600.01	182.74	2898	3600.0	600335.95
unbalance	6500	2	181	3600.02	∞	459	3600.05	179555.61

43

That's (Almost) It

- $\cdot\,$ We get from nothing to
 - 8/25 solved instances
 - All other instances have a finite gap
- Solving the problem to global optimality still stays an extremely challenging task
- We can solve "moderate-sized" instances
 - Idea: Combine with reduction-techniques
 - Reduced-space branch-and-bound method by Hua et al. (2021)
 - Random projections by Liberti and Manca (2021)

That's (Almost) It

- $\cdot\,$ We get from nothing to
 - 8/25 solved instances
 - All other instances have a finite gap
- Solving the problem to global optimality still stays an extremely challenging task
- We can solve "moderate-sized" instances
 - Idea: Combine with reduction-techniques
 - Reduced-space branch-and-bound method by Hua et al. (2021)
 - Random projections by Liberti and Manca (2021)

Preprint can be found soon at ...

