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What is Bilevel Optimization Anyway?



Bilevel Optimization in a Nutshell

“Usual” optimization models

• single decision maker

• one set of variables and constraints

• one objective function

Bilevel optimization

• two decision makers

• both interact in a hierarchical way
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Hierarchical Decision Making

Leader: Alice x
decides first

anticipates follower (Bob)

Follower: Bob y
decides second (of course)
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A Bit More Formal

Upper-level problem

“min
x
” F(x, y)

s.t. G(x, y) ≥ 0

, y ∈ S(x)

Lower-level problem

min
y

f (x, y)

s.t. g(x, y) ≥ 0

Different solution concepts: optimistic vs. pessimistic
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The Linear-Linear Case

min
x∈Rn,y∈Rm

c>x + d>y s.t. Ax + By ≥ a, y ∈ S(x)

S(x) denotes the set of optimal solutions of the x-parameterized linear problem

min
y

f>y s.t. Dy ≥ b− Cx

• Strongly NP-hard problem in general (Hansen, Jaumard, Savard 1992)

• Optimistic variant (Dempe 2002)
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How to solve these problems: The KKT reformulation

The lower-level problem is an LP:

min
y

f>y s.t. Dy ≥ b− Cx

The KKT conditions

Cx + Dy ≥ b

λ ≥ 0, D>λ = f

λ>(Cx + Dy − b) = 0

are both necessary and sufficient

Single-level reformulation

min
x,y,λ

c>x + d>y

s.t. Ax + By ≥ a, Cx + Dy ≥ b

λ ∈ ΩD := {λ ≥ 0 : D>λ = f}

λ>(Cx + Dy − b) = 0
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KKT Reformulation

min
x,y,λ

c>x + d>y

s.t. Ax + By ≥ a, Cx + Dy ≥ b

λ ∈ ΩD := {λ ≥ 0 : D>λ = f}

λ>(Cx + Dy − b) = 0

• Be careful if the dual multipliers are not unique (Dempe, Dutta 2012)

• Otherwise, all is nice …

• … except for the nasty KKT complementarity conditions

λ>(Cx + Dy − b) = 0
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How to deal with KKT complementarity conditions

λ>(Cx + Dy − b) = 0

That’s a disjunction
λi = 0 ∨ (Cx + Dy − b)i = 0, i ∈ {1, . . . , `}

Introduce a binary variable and some big-Ms …

Cx + Dy − b ≤ MP(1− u)

λ ≤ MDu

u ∈ {0, 1}`
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Mixed-Integer Linear Reformulation

min
x,y,λ,u

c>x + d>y

s.t. Ax + By ≥ a, Cx + Dy ≥ b

λ ∈ ΩD := {λ ≥ 0 : D>λ = f}

Cx + Dy − b ≤ MP(1− u)

λ ≤ MDu

u ∈ {0, 1}`

But how to choose the nasty big-Ms?
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Pitfall #1: Heuristics do not work!
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Pitfall #2: It is really hard!
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A Real-World Application:
The European Gas Market
with Chance Constraints



The European Entry-Exit Gas Market

Level 1 TSO announces technical capacities and booking price floors

Level 2 Traders book, i.e., sign mid- to long-term capacity contracts

Level 3 Traders nominate at a day-ahead market

Level 4 TSO cost-optimally transports the given nominations

Grimm, Schewe, S., Zöttl (2019)

• Four-level modeling of the European entry-exit gas market

• Identification of assumptions that allow to simplify the model

• Perfect competition→ reduction to a bilevel model
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The European Entry-Exit Gas Market
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The European Entry-Exit Gas Market
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Bilevel Modeling Under Perfect Competition: Upper Level

max
qTC,

¯
πbook,π,q

ϕu(qnom, q) =
∑
t∈T

∑
i∈P−

∫ qnomi,t

0
Pi,t(s)ds−

∑
i∈P+

cvari qnomi,t

−∑
t∈T

∑
a∈A

ctrans(qa,t)

s.t. 0 ≤ qTCu , 0 ≤
¯
πbooku for all u ∈ V+ ∪ V−∑

u∈V+∪V−

∑
i∈Pu

¯
πbooku qbooki =

∑
t∈T

∑
a∈A

ctrans(qa,t)

(π, q) ∈ F(qnom)

(qbook, qnom) ∈ argmax { lower-level problem }
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Bilevel Modeling Under Perfect Competition: Lower Level

max
qbook,qnom

∑
t∈T

∑
i∈P−

∫ qnomi,t

0
Pi,t(s)ds−

∑
i∈P+

cvari qnomi,t

− ∑
u∈V+∪V−

∑
i∈Pu

¯
πbooku qbooki

s.t.
∑
i∈Pu

qbooki ≤ qTCu for all u ∈ V+ ∪ V−

0 ≤ qnomi,t ≤ qbooki for all i ∈ P− ∪ P+, t ∈ T∑
i∈P−

qnomi,t −
∑
i∈P+

qnomi,t = 0 for all t ∈ T
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Probabilistic Extension

• In reality, exit players i ∈ P− nominate quantities qnomi,t

without exactly knowing the actual load ξi,t

• Load vector ξ = (ξi,t)i∈P−,t∈T with log-concave cumulative distribution function

• In particular: ξ ∼ N (m,Σ)

• Modeling assumption: the TSO imposes a fee µ on the exit players i ∈ P− to ensure that the
realized loads are covered up to a specified safety level p ∈ [0, 1]

• Joint (over all times and exit players) probabilistic constraint

P
(
ξi,t ≤ qnomi,t for all i ∈ P−, t ∈ T

)
≥ p

• Log-concavity of the Gaussian distribution function implies that the log-transformed
probabilistic load coverage constraint

h(qnom− ) := log p− log P
(
ξi,t ≤ qnomi,t for all i ∈ P−, t ∈ T

)
≤ 0

is convex
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Bilevel Optimization

min
x,y

F(x, y)

s.t. G(x, y) ≤ 0

x ∈ Rnx , y ∈ Rny

y ∈ S(x)

S(x) is the solution set of the convex lower-level problem

S(x) = argmin
y

{
f (x, y) : g(x, y) ≤ 0, y ∈ Rny}
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Black-Box Constraint in the Lower Level

A “small” extension

S(x) = argmin
y

{
f (x, y) : g(x, y) ≤ 0, b(y) ≤ 0, y ∈ Rny}

Assumption

The black-box function b is convex and for all (x, y) ∈ {(x, y) : G(x, y) ≤ 0, g(x, y) ≤ 0}, …

1. we can evaluate the function b(y),

2. we can evaluate the gradient ∇b(y),

3. the gradient is bounded, i.e., ‖∇b(y)‖ ≤ K for a fixed K ∈ R.
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Some Notation & Single-Level Reformulation

• Shared constraint set

Ω := {(x, y) : G(x, y) ≤ 0, g(x, y) ≤ 0, b(y) ≤ 0}

• Projection onto the decision space of the leader

Ωu := {x : ∃y with (x, y) ∈ Ω}

• Optimal value function of the lower level

ϕ(x) = min
y
{f (x, y) : g(x, y), b(y) ≤ 0, y ∈ Rny}

• Single-level reformulation

min
x,y

F(x, y)

s.t. G(x, y) ≤ 0, g(x, y) ≤ 0, b(y) ≤ 0

f (x, y) ≤ ϕ(x)

x ∈ Rnx , y ∈ Rny
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Obstacles and Pitfalls

• Main challenge: black-box constraint b(y) ≤ 0

• Not given explicitly→ optimality conditions (KKT) are not given explicitly as well

• Possible remedies
• Cutting plane techniques (Kelley 1960)
• Outer approximation (Duran, Grossmann 1986; Fletcher, Leyffer 1994)

• But: b(y) ≤ 0 can only by satisfied up to a prescribed tolerance
• Specifying the quality of solutions via ε-δ-optimality

• Global optimization (Locatelli, Schoen 2013)
• Bilevel optimization (Mitsos, Lemonidis, Barton 2008)
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ε-δ-Optimality

Definition
For δ = (δG, δg, δb, δf ) ∈ Rmu+m`+2

≥0 , a point (x̄, ȳ) ∈ Rnx × Rny is called δ-feasible for the bilevel
problem if G(x̄, ȳ) ≤ δG, g(x̄, ȳ) ≤ δg, b(y) ≤ δb, and f (x, y) ≤ ϕ(x) + δf hold. Moreover, for ε ≥ 0, a
point (x∗, y∗) ∈ Rnx × Rny is called ε-δ-optimal for the bilevel problem, if it is δ-feasible and if
F(x∗, y∗) ≤ F∗ + ε holds, with F∗ denoting the optimal objective function value of the bilevel
problem.

• A δ-feasible point (x̄, ȳ) is δf -(δg, δb)-optimal for the lower level with fixed x = x̄

• Assume f and g pose no challenges→ choose δf = δg = 0

• Assume F and G pose no challenges→ can we obtain 0-δ-optimal solutions with
δ = (0, 0, δb, 0)?
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0-δ-optimal solutions with δ = (0, 0, δb, 0)?

• Consider the relaxed lower-level problem

min
y∈Rny

f (x̄, y) s.t. g(x̄, y) ≤ 0, b(y) ≤ δb

• Denote the optimal value function by
¯
ϕ(x)

• Relaxation property yields
¯
ϕ(x) ≤ ϕ(x) for all feasible x ∈ Ωu

• First-relax-then-reformulate leads to a single-level problem with f (x, y) ≤
¯
ϕ(x)

• If
¯
ϕ(x) < ϕ(x) holds for any x ∈ Ωu, this single-level reformulation

is not a relaxation of the original single-level reformulation

• It is not clear whether and how ε-δ-optimality can be guaranteed

Can we hope for the δ-feasible points with δ = (0, 0, δb, 0)?
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A “First-Relax-Then-Reformulate” Approach

• Block-box constraint b(y) ≥ 0 is convex
• Construct a sequence of linear outer approximations (Er, er)r∈N of the black-box
constraint b(y) ≤ 0 with the property

{y ∈ Rny : b(y) ≤ 0} ⊆ {y ∈ Rny : Er+1y ≤ er+1} ⊆ {y ∈ Rny : Ery ≤ er}

• For a given upper-level solution x̄ ∈ Ωu and r ∈ N, the adapted lower-level problem reads

min
y∈Rny

f (x̄, y) s.t. g(x̄, y) ≤ 0, Ery ≤ er

• This is a relaxation of the original lower-level problem
•
¯
ϕr(x): optimal value function

• Assumption: Slater’s constraint qualification holds

Proposition

For every r ∈ N and every upper-level decision x ∈ Ωu, it holds

¯
ϕr(x) ≤

¯
ϕr+1(x) ≤ ϕ(x)

25
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• For a given upper-level solution x̄ ∈ Ωu and r ∈ N, the adapted lower-level problem reads

min
y∈Rny

f (x̄, y) s.t. g(x̄, y) ≤ 0, Ery ≤ er

• This is a relaxation of the original lower-level problem
•
¯
ϕr(x): optimal value function

• Assumption: Slater’s constraint qualification holds
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A “First-Relax-Then-Reformulate” Approach

Modified variant of the single-level reformulation

min
x,y

F(x, y)

s.t. G(x, y) ≤ 0, g(x, y) ≤ 0

Ery ≤ er

f (x, y) ≤
¯
ϕr(x)

x ∈ Rnx , y ∈ Rny

Feasibility problem

min
x,y,s

s

s.t. G(x, y) ≤ 0, g(x, y) ≤ 0

Ery ≤ er

f (x, y) ≤
¯
ϕr(x) + s

x ∈ Rnx , y ∈ Rny
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Algorithm “First-Relax-Then-Reformulate”.

1: Choose δb > 0, set r = 0, s = 0, χ =∞, E0 = [0 . . . 0] ∈ R1×ny , e0 = 0 ∈ R.
2: while χ > δb or s > 0 do
3: Construct Er+1 and er+1

4: if the modified variant of the single-level reformulation is feasible then
5: Solve this problem to obtain (xr+1, yr+1) and set s = 0.
6: else if the feasibility problem is feasible then
7: Solve this problem to obtain (xr+1, yr+1, s).
8: else
9: Return “The original problem is infeasible.”
10: end if
11: Set r ← r + 1 and χ = b(yr).
12: end while
13: Return (x̄, ȳ) = (xr, yr).

Theorem: If the algorithm terminates, then (x̄, ȳ) is (0, 0, δb, 0)-feasible for original bilevel problem.
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The Test Network
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Numerical Results

Bisection Bounding δ-Feasibility Total

p Runtime #Iter. Runtime #Iter. Runtime #Iter. Runtime Gap

0.60 12.13 32 36.80 10 28.97 42 77.9 0.001
0.65 14.15 28 32.00 16 40.71 44 86.86 0.001
0.70 11.13 26 29.70 13 39.70 39 80.53 0.001
0.75 9.04 25 28.55 6 14.19 31 51.78 0.002
0.80 7.98 25 29.06 4 6.26 29 43.3 0.005
0.85 11.08 21 24.01 3 7.41 24 42.5 0.006
0.90 11.05 23 26.34 8 27.52 31 64.91 0.017
0.95 5.96 24 27.99 6 14.14 30 48.09 0.010
0.96 7.56 22 24.56 3 4.17 25 36.29 0.011
0.97 6.94 21 23.96 4 9.20 25 40.10 0.015
0.98 4.63 25 93.68 9 106.31 34 204.62 0.032
0.99 6.96 26 29.76 10 1250.65 36 1287.37 0.187
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Total Welfare and Price of Load Coverage
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All the details …
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An Open Problem:
Continuous & Nonconvex Lower Levels



Nonconvexities in the Lower Level

Upper-level problem

“min
x
” F(x, y)

s.t. G(x, y) ≥ 0, y ∈ S(x)

Lower-level problem

min
y

f (x, y)

s.t. g(x, y) ≥ 0
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Who can solve this problem?

Upper level

max
x∈R2

F(x, y) = x1 − 2yn+1 + yn+2

s.t. (x1, x2) ∈ [x1, x̄1]× [x2, x̄2]

y ∈ S(x)

Lower level

max
y∈Rn+2

f (x, y) = y1 − yn (x1 + x2 − yn+1 − yn+2)

s.t. y1 + yn =
1
2

y2i ≤ yi+1, i ∈ {1, . . . ,n− 1}

yi ≥ 0, i ∈ {1, . . . ,n}

yn+1 ∈ [0, x1]

yn+2 ∈ [−x2, x2]

• x, x̄ ∈ R2 with 1 ≤ xi < x̄i, i ∈ {1, 2}

• Upper level is an LP
with simple bound constraints

• Upper level has no coupling constraints

• Feasible set of lower level is non-empty and
compact for all feasible leader decisions

• Slater’s CQ is also satisfied for all feasible
leader decisions

• All constraints are linear except for some
convex-quadratic inequality constraints

• The coefficients/right-hand sides
are either 1 or 1/2

• Bilinear objective function
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Exact feasibility

max
y∈Rn+2

f (x, y) = y1 − yn (x1 + x2 − yn+1 − yn+2)

s.t. y1 + yn =
1
2

y2i ≤ yi+1, i ∈ {1, . . . ,n− 1}

yi ≥ 0, i ∈ {1, . . . ,n}

yn+1 ∈ [0, x1]

yn+2 ∈ [−x2, x2]

Result #1
For every feasible leader’s decision
(x1, x2) ∈ [x1, x̄1]× [x2, x̄2], a feasible follower’s
decision y satisfies yn > 0.

Result #2
For every feasible leader’s decision
(x1, x2) ∈ [x1, x̄1]× [x2, x̄2], the set of optimal
solutions of the lower-level problem is a
singleton.

Result #3
The bilevel problem has a unique solution given
by x∗ = (x1, x̄2) with an optimal objective function
value of F∗ = x1 + x̄2.
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ε-feasibility

Definition

Let 0 < ε ∈ R, f : Rn → R, and g : Rn → Rm be given. A point x ∈ Rn is called ε-feasible for the
problem maxx∈Rn{f (x) : g(x) ≤ 0} if gi(x) ≤ 0 holds for all i ∈ {1, . . . ,m} \ N and if maxi∈N gi(x) ≤ ε

holds, where N ⊆ {1, . . . ,m} denotes the index set of all nonlinear constraints.

Result #4

Unless ε < 2−2n−1
, there is an ε-feasible follower’s decision y with yn = 0 for every feasible leader’s

decision (x1, x2) ∈ [x1, x̄1]× [x2, x̄2].

Result #5

Unless ε < 2−2n−1
, the set of ε-feasible follower’s solutions is not a singleton for every feasible

leader’s decision (x1, x2) ∈ [x1, x̄1]× [x2, x̄2].
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ε-feasibility

Result #3 (revisited)
The bilevel problem has a unique solution given by x∗ = (x1, x̄2) with an optimal objective function
value of F∗ = x1 + x̄2.

Result #6

Let ε ≥ 2−2n−1
and suppose that we allow for ε-feasible follower’s solutions.

Then, the optimistic optimal solution of the bilevel problem is given by x∗o = (x̄1, x̄2) with an optimal
objective function value of F∗o = x̄1 + x̄2.

The pessimistic optimal solution is given by x∗p = (x1, x2) with an optimal objective function value
of F∗p = −x1 − x2.

• By the way: n ≥ log2(log2(1/ε2))

• For ε = 10−8, the problem gets unsolvable for n = 6
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Well … and now?

Is this an impossibility result
for computationally solving bilevel problems

with continuous and nonconvex lower-level problems?
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