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November 23: “I would like to invite you to give a semi-plenary keynote
at our conference within the area of "Discrete Optimization and Al-
gorithms”. We think that your expertise in "Bilevel Optimization” will
make a valuable contribution to the conference.”

November 24: “Hi Arie, thank you very much for your email and your
offer to give a keynote at the EURO 2022 in Espoo. | feel very honored
- you can log me in!”

March 28: “Dear laureates, | am sorry | forgot one "obligation” for one
of you: ..”

March 28: “ am giving a keynote at EURO 2022 already but | am happy
to give a talk on the paper if no other one wants to give this talk”



End of March ...




March to end of June ...




End of June ...




Overview

What is Bilevel Optimization Anyway?

A Brief History of Mixed-Integer Techniques for Bilevel Optimization



What is Bilevel Optimization Anyway?



Bilevel Optimization in a Nutshell

- a single decision maker
- one set of variables and constraints

- one objective function



Bilevel Optimization in a Nutshell

- a single decision maker
- one set of variables and constraints

- one objective function

- two decision makers

- both interact in a hierarchical way



Hierarchical Decision Making

{
Leader: Alice x
decides first
anticipates follower (Bob)

03

Follower: Bob y
decides second (of course)



A Bit More Formal

Upper-level problem
“min”  F(x,y)

st. G(x,y) >0
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A Bit More Formal

Upper-level problem
“min” F(x.)
st. G(x,y) >0, yeSkx)
Lower-level problem
min f(x,y)
st. g(x,y) >0



A Bit More Formal

Upper-level problem
“min”  F(x,y)
st. G(x,y) >0, yeSkx)

Lower-level problem
min f(x,y)
y

st. g(x,y) >0

- Different solution concepts: optimistic vs. pessimistic
- Strongly NP-hard problem in general

- Checking local optimality is NP-hard

- Mixed-integer linear bilevel problems are ¥j-hard

- Optimistic variant



A Brief History of Mixed-Integer
Techniques for Bilevel Optimization



Research Activity in Bilevel Optimization
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Heinrich Freiherr von Stackelberg

Hierarchy in decision making in markets

- 1934: Marktform und Gleichgewicht
(Habilitation thesis)

- 1952: Theory of the market economy




The 1960s: A Bilevel-Free Time
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The 1960s: A Bilevel-Free Time

Bilevel-free time, but ...

: branch-and-bound
: cutting plane method
: Benders decomposition
: generalized Benders decomposition
& - dual feasible set is unbounded for bounded primal feasible sets
: special ordered sets (SOS) of type 1



The 1970s: Where it really started
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The 1970s: Where it really started

- Military application

Cost-minimal mix of weapons

Development Research Center
Discussion Papers

No. 20

MULTI-LEVEL PROGRAMMING
by

Wilfred Candler and Roger Norton

January 1977

Mathematical Programs with Optimization Problems
in the Constraints

Jerome Bracken and James T. McGill
Institute for Defense Analyses, Arlington, Virginia
(Received October 5, 1971)

This paper i a class of optimization problems i by con-
straints that themselves contain optnmuhon problems. The problems i m !he
ints can be linear or two-sided op

tion problems, including certain types of games. The paper presents theory
dealing pnmnly with properties of the relevnnt functions that result in convex
and di ions of this theory. It gives

lication with linear in the i and di p
hml methods for solving the problems.

- First general discussion of
multi-/two-level problems



Fortuny-Amat and McCarl (1981): Maybe the most influential bilevel paper

J. Opl Res. Soc. Vol. 32. pp. 783 to 792. 1981 0160-5682/81/090783-10$02.00/0
Printed in Great Britain. All rights reserved Copyright © 1981 Operational Rescarch Society Ltd

A Representation and Economic Interpretation
of a Two-Level Programming Probiem

JOSE FORTUNY-AMAT and BRUCE McCARL

Graduate School of Administration, University of California, Riverside, California, U.S.A. and Purdue Univer-
sity, West Lafayette, Indiana, U.S.A.

This paper first presents a formulation for a class of hierarchial problems that show a two-stage
decision making process; this formulation is termed multilevel programming and could be defined, in
general, as a mathematical programming problem (master) containing other multilevel programs in
the constraints (subproblems). A two-level problem is analyzed in detail, and we develop a solution
procedure that replaces the subproblem by its Kuhn-Tucker conditions and then further transforms
it into a mixed integer quadratic programming problem by exploiting the disjunctive nature of the
complementary slackness conditions.

An example problem is solved and the economic implications of the formulation and its solution
are reviewed.



Fortuny-Amat and McCarl (1981): But at least (one of) the best cited papers in bilevel optimization

A representation and economic interpretation of a two-level programming
problem

J Fortuny-Amat, B McCarl - Journal of the operational Research Saciety, 1981 - Springer

This paper first presents a formulation for a class of hierarchial problems that show a two-

stage decision making process, this formulation is termed multilevel programming and could

be defined, in general, as a mathematical programming preblem (master) containing cther

multilevel programs in the constrainis (subproblems). A two-level problem is analyzed in

detail, and we develop a solution procedure that replaces the subproblem by its Kuhn-

Tucker conditions and then further transforms it into a mixed integer guadratic programming ...
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The Linear-Linear Case

min c'x+d'y st Ax+By>a,yeSkx)
XERN,yeRM

20



The Linear-Linear Case

min c'x+d'y st Ax+By>a,yeSkx)
XERN,yeRM

S(x): set of optimal solutions of the x-parameterized linear problem

min f'y st Dy>b—Cx
y

20



Fortuny-Amat and McCarl (1981)

The isan LP:
min f'y st Dy>b—Cx
y
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Fortuny-Amat and McCarl (1981)

The isan LP:
min f'y st Dy>b—Cx
y
The
Cx+Dy>b
A>0,D'A=f

AT(Cx+Dy —b)=0

are both necessary and sufficient
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Fortuny-Amat and McCarl (1981)

The isan LP:

The

are both necessary and sufficient

min
v

f'y st Dy>b—Cx

Cx+Dy>b
A>0,D'A=f
AT(Cx+Dy —b)=0

c'x+d"y

Ax+By>a, Cx+Dy>b
A>0, D'A=Ff
AT(Cx4+Dy —b)=0
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Fortuny-Amat and McCarl (1981)

min ¢c'x+d'y

st. Ax+By>a, Cx+Dy>b
A>0, D'A=f
AT(Cx+Dy —b) =0
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Fortuny-Amat and McCarl (1981)

min ¢c'x+d'y

st. Ax+By>a, Cx+Dy>b
A>0, D'A=f
AT(Cx+Dy —b) =0

- Be careful if the dual multipliers are not unique (Dempe, Dutta 2012)
- Otherwise, all is nice ...

- ... except for the nasty KKT complementarity conditions

AT(Cx+Dy —b) =0

22



How to deal with KKT complementarity conditions

AT(Cx+Dy —b) =0
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How to deal with KKT complementarity conditions

AT(Cx+Dy—b)=0

That's a
A=0 VvV (&x+Dy—0b)=0, ie{l,...,¢}

Introduce a binary variable and some big-Ms ...

Cx+ Dy —b < Mp(1—u)
A < Mpu
ue{0,1}*
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Mixed-Integer Linear Reformulation

men; c'x+d'y
st. Ax+By>a, x+Dy>b
A>0, D'aA=f
Cx+Dy —b < Mp(1—u)
A < Mpu
ue{0,1}*
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Mixed-Integer Linear Reformulation

men; c'x+d'y
st. Ax+By>a, x+Dy>b
A>0, D'aA=f
Cx+Dy —b < Mp(1—u)
A < Mpu
ue{0,1}*

But how to choose the nasty big-Ms?

24



Pitfall #1: Heuristics do not work!

Solving Linear Bilevel Problems Using Big-Ms:
Not All That Glitters Is Gold

Salvador Pineda and Juan Miguel Morales

Abstract—The most common procedure to solve a linear bilevel
problem in the PES community is, by far, to transform it into
an equivalent single-level problem by replacing the lower level
with its KKT optimality conditions. Then, the complementarity
conditions are reformulated using additional binary variables and
large enough constants (big-Ms) to cast the single-level problem
as a mixed-integer linear program that can be solved using
optimization software. In most cases, such large constants are
tuned by trial and error. We show, through a counterexample,
that this widely used trial-and-error approach may lead to
highly suboptimal solutions. Then, further research is required
to properly select big-M values to solve linear bilevel problems.

Index Terms—Bilevel programming, optimality conditions,
mathematical program with equilibrium constraints (MPEC).

in [5]. Dealing with the solution to this variant goes beyond
the purposes of this letter and thus, we assume d; = 0. This
assumption is common in several applications of linear bilevel
programming in the PES technical literature. For example, in
long-term planning models formulated as bilevel problems [6],
[71, [8], [9], the upper-level problem determines investment
decisions to maximize investor’s profit, while the lower-level
problem yields the dispatch quantities to minimize operating
cost. In most cases, upper-level constraints model maximum
available capacities to be installed and/or budget limitations,
but do not include lower-level dispatch variables.

Since the lower-level optimization problem is linear, it can
be replaced with its KKT optimality conditions as follows:

25



Pitfall #2: It's really hard!

Home > Operations Research > Vol. 68, No. 6 >

Technical Note—There's No Free Lunch: On the Hardness
of Choosing a Correct Big-M in Bilevel Optimization

Thomas Kleinert ", Martine Labbé "=, Fr ank Plein “*", Martin Schmidt

Published Online: 30 Jun 2020 | https://doi.org/10.1287/opre.2019.1944

Abstract

One of the most frequently used approaches to solve linear bilevel optimization problems consists in
replacing the lower-level problem with its Karush—Kuhn—-Tucker (KKT) conditions and by
reformulating the KKT complementarity conditions using techniques from mixed-integer linear
optimization. The latter step requires to determine some big-M constant in order to bound the lower
level's dual feasible set such that no bilevel-optimal solution is cut off. In practice, heuristics are
often used to find a big-M although it is known that these approaches may fail. In this paper, we
consider the hardness of two proxies for the above mentioned concept of a bilevel-correct big-M.
First, we prove that verifying that a given big-M does not cut off any feasible vertex of the lower
level's dual polyhedron cannot be done in polynomial time unless P = NP. Second, we show that
verifying that a given big-M does not cut off any optimal point of the lower level’s dual problem (for
any point in the projection of the high-point relaxation onto the leader’s decision space) is as hard as
solving the original bilevel problem.
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Remedy: It's not even required anymore!

‘WHY THERE IS NO NEED TO USE A BIG-M IN LINEAR BILEVEL
OPTIMIZATION: A COMPUTATIONAL STUDY OF TWO
READY-TO-USE APPROACHES

THOMAS KLEINERT'? AND MARTIN SCHMIDT®

ABSTRACT. Linear bilevel optimization problems have gained increasing atten-
tion both in theory as well as in practical applications of Operations Research
(OR) during the last years and decades. The latter is mainly due to the ability
of this class of problems to model hierarchical decision processes. However, this
ability makes bilevel problems also very hard to solve. Since no general-purpose
solvers are available, a “best-practice” has developed in the applied OR com-
munity, in which not all people want to develop tailored algorithms but “just
use” bilevel optimization as a modeling tool for practice. This best-practice
is the big-M reformulation of the Karush-Kuhn Tucker (KKT) conditions
of the lower-level problem —an approach that has been shown to be highly
problematic by Pineda and Morales (2019). Choosing invalid values for M
yields solutions that may be arbitrarily bad. Checking the validity of the
big-Ms is however shown to be as hard as solving the original bilevel problem in
Kleinert et al. (2019). Nevertheless, due to its appealing simplicity, especially
w.r.t. the required implementation effort, this ready-to-use approach still is the
most popular method. Until now, there has been a lack of approaches that are
competitive both in terms of implementation effort and computational cost.

In this note we demonstrate that there is indeed another competitive ready-
to-use approach: If the SOS-1 technique is applied to the KKT complementarity
conditions, adding the simple additional root-node inequality developed by
Kleinert et al. (2020) leads to a competitive performance —without having all
the possible theoretical disadvantages of the big-M approach.
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The 1990s: Branch-and-Bound

: Branch-and-bound for bilevel problems
with continuous problems at both levels

- Similar ideas and extensions: A
: New branching rules + strong NP hardness

. First branch-and-bound for discrete bilevel problems
- Similar ideas and extensions:

28



The 1990s: Branch-and-Bound

: Branch-and-bound for bilevel problems
with continuous problems at both levels

- Similar ideas and extensions: A

: New branching rules + strong NP hardness
. First branch-and-bound for discrete bilevel problems
- Similar ideas and extensions:

Cuts entered the stage later on:

: Tuy’s cuts
. disjunctive cuts
: Gomory-like cuts

: primal-dual coupling cuts

28



From 2009 on ...
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Why 2009?

Moore and Bard (1990)
- First branch-and-bound for discrete bilevel problems

- Bad news: two of the three standard branch-and-bound fathoming rules
for mixed-integer optimization are not valid in the bilevel context
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Why 2009?

Moore and Bard (1990)
- First branch-and-bound for discrete bilevel problems

- Bad news: two of the three standard branch-and-bound fathoming rules
for mixed-integer optimization are not valid in the bilevel context

The Redemption
: “A branch-and-cut algorithm for integer bilevel linear programs”

- MILP-based branch-and-cut approach

30



This pushed the research again

Branch-and-bound

: branch-and-bound method for mixed-integer upper- and
lower-level problems + coupling constraints at the upper level

- multi-way branching

: watermelon algorithm
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This pushed the research again

Branch-and-bound

: branch-and-bound method for mixed-integer upper- and
lower-level problems + coupling constraints at the upper level

- multi-way branching

: watermelon algorithm

Branch-and-Cut
: generalized no-good cuts
: another variant of no-good-cuts
- intersection cuts to separate integer bilevel infeasible points

: Follow-up with improved computational techniques
+available code

: another available code
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Not touched here but in the survey

- Bilinear lower levels

- pricing problems
- toll setting problems

- Stackelberg bimatrix games
- Interdiction games
- Pessimistic setting

- Mixed-integer nonlinear bilevel problems

32
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