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What is Bilevel Optimization Anyway?
Outer Approximation for MIQP-QP Bilevel Problems

An Open Problem: Continuous & Nonconvex Lower Levels



What is Bilevel Optimization Anyway?



Bilevel Optimization in a Nutshell

- a single decision maker
- one set of variables and constraints

- one objective function



Bilevel Optimization in a Nutshell

- a single decision maker
- one set of variables and constraints

- one objective function

- two decision makers

- both interact in a hierarchical way



Hierarchical Decision Making

{
Leader: Alice x
decides first
anticipates follower (Bob)

03

Follower: Bob y
decides second (of course)



A Bit More Formal

Upper-level problem
“min” F(x,)

st. G(x,y)>0
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A Bit More Formal

Upper-level problem
“min”  F(x,y)
st. G(x,y) >0, yeSKX)
Lower-level problem

min f(x,y)
st. g(x,y) >0

Different solution concepts: Vs,



The Linear-Linear Case

min c'x+d'y st Ax+By>a,yeS(kx)

XERM yeRM
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The Linear-Linear Case

min c'x+d'y st Ax+By>a,yeS(kx)

XERN,yeRM

S(x): set of optimal solutions of the x-parameterized linear problem
min f'y st Dy>b—Cx
y

- Strongly NP-hard problem (Hansen, Jaumard, Savard 1992)

- Checking local optimality is NP-hard (Vicente et al. 1994)

- Mixed-integer linear bilevel problems are Zf,—hard (Lodi et al. 2014)
- Optimistic variant (Dempe 2002)



How to solve these problems: The KKT reformulation

The isan LP:
min f'y st Dy>b—Cx
y
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How to solve these problems: The KKT reformulation

The isan LP:
min f'y st Dy>b—Cx
y
The
Cx+Dy>b
A>0,D'A=f

AT(Cx+Dy —b)=0

are both necessary and sufficient

min ¢c'x+d'y

st. Ax+By>a, Cx+Dy>b
A>0, D'A=F
AT(Cx4+Dy —b)=0



KKT Reformulation

min ¢c'x+d'y
XY\

st. Ax+By>a, (x+Dy>b
A>0, D'a=f
AT(Cx+Dy —b)=0



KKT Reformulation

min ¢c'x+d'y
X,¥ A
st. Ax+By>a, (x+Dy>b
A>0, D'a=f

AT(Cx+Dy —b)=0

- Allis nice ...

- ... except for the nasty KKT complementarity conditions

AT(Cx+Dy —b) =0



How to deal with KKT complementarity conditions

AT(Cx+Dy —b) =0



How to deal with KKT complementarity conditions

AT(Cx+Dy—b)=0

That's a
A=0 VvV (&x+Dy—0b)=0, ie{l,...,¢}

Introduce a binary variable and some big-Ms ...

Cx+ Dy —b < Mp(1—u)
A < Mpu
ue{0,1}*



Mixed-Integer Linear Reformulation

Xr;nAnu c'x+d'y

st. Ax+By>a, x+Dy>b
A>0, D'A=f
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Mixed-Integer Linear Reformulation

Xr;nAnu c'x+d'y

st. Ax+By>a, x+Dy>b
A>0, D'A=f
Cx+Dy —b < Mp(1—u)
A < Mpu
ue{0,1}*

But how to choose the nasty big-Ms?



Pitfall #1: Heuristics do not work!

Solving Linear Bilevel Problems Using Big-Ms:
Not All That Glitters Is Gold

Salvador Pineda and Juan Miguel Morales

Abstract—The most common procedure to solve a linear bilevel
problem in the PES community is, by far, to transform it into
an equivalent single-level problem by replacing the lower level
with its KKT optimality conditions. Then, the complementarity
conditions are reformulated using additional binary variables and
large enough constants (big-Ms) to cast the single-level problem
as a mixed-integer linear program that can be solved using
optimization software. In most cases, such large constants are
tuned by trial and error. We show, through a counterexample,
that this widely used trial-and-error approach may lead to
highly suboptimal solutions. Then, further research is required
to properly select big-M values to solve linear bilevel problems.

Index Terms—Bilevel programming, optimality conditions,
mathematical program with equilibrium constraints (MPEC).

in [5]. Dealing with the solution to this variant goes beyond
the purposes of this letter and thus, we assume d; = 0. This
assumption is common in several applications of linear bilevel
programming in the PES technical literature. For example, in
long-term planning models formulated as bilevel problems [6],
[71, [8], [9], the upper-level problem determines investment
decisions to maximize investor’s profit, while the lower-level
problem yields the dispatch quantities to minimize operating
cost. In most cases, upper-level constraints model maximum
available capacities to be installed and/or budget limitations,
but do not include lower-level dispatch variables.

Since the lower-level optimization problem is linear, it can
be replaced with its KKT optimality conditions as follows:




Pitfall #2: It's really hard!

Home > Operations Research > Vol. 68, No. 6 >

Technical Note—There's No Free Lunch: On the Hardness
of Choosing a Correct Big-M in Bilevel Optimization

Thomas Kleinert ", Martine Labbé "=, Fr ank Plein “*", Martin Schmidt

Published Online: 30 Jun 2020 | https://doi.org/10.1287/opre.2019.1944

Abstract

One of the most frequently used approaches to solve linear bilevel optimization problems consists in
replacing the lower-level problem with its Karush—Kuhn—-Tucker (KKT) conditions and by
reformulating the KKT complementarity conditions using techniques from mixed-integer linear
optimization. The latter step requires to determine some big-M constant in order to bound the lower
level's dual feasible set such that no bilevel-optimal solution is cut off. In practice, heuristics are
often used to find a big-M although it is known that these approaches may fail. In this paper, we
consider the hardness of two proxies for the above mentioned concept of a bilevel-correct big-M.
First, we prove that verifying that a given big-M does not cut off any feasible vertex of the lower
level's dual polyhedron cannot be done in polynomial time unless P = NP. Second, we show that
verifying that a given big-M does not cut off any optimal point of the lower level’s dual problem (for
any point in the projection of the high-point relaxation onto the leader’s decision space) is as hard as
solving the original bilevel problem.



Remedy: It's not even required anymore!

‘WHY THERE IS NO NEED TO USE A BIG-M IN LINEAR BILEVEL
OPTIMIZATION: A COMPUTATIONAL STUDY OF TWO
READY-TO-USE APPROACHES

THOMAS KLEINERT'? AND MARTIN SCHMIDT®

ABSTRACT. Linear bilevel optimization problems have gained increasing atten-
tion both in theory as well as in practical applications of Operations Research
(OR) during the last years and decades. The latter is mainly due to the ability
of this class of problems to model hierarchical decision processes. However, this
ability makes bilevel problems also very hard to solve. Since no general-purpose
solvers are available, a “best-practice” has developed in the applied OR com-
munity, in which not all people want to develop tailored algorithms but “just
use” bilevel optimization as a modeling tool for practice. This best-practice
is the big-M reformulation of the Karush-Kuhn Tucker (KKT) conditions
of the lower-level problem —an approach that has been shown to be highly
problematic by Pineda and Morales (2019). Choosing invalid values for M
yields solutions that may be arbitrarily bad. Checking the validity of the
big-Ms is however shown to be as hard as solving the original bilevel problem in
Kleinert et al. (2019). Nevertheless, due to its appealing simplicity, especially
w.r.t. the required implementation effort, this ready-to-use approach still is the
most popular method. Until now, there has been a lack of approaches that are
competitive both in terms of implementation effort and computational cost.

In this note we demonstrate that there is indeed another competitive ready-
to-use approach: If the SOS-1 technique is applied to the KKT complementarity
conditions, adding the simple additional root-node inequality developed by
Kleinert et al. (2020) leads to a competitive performance —without having all
the possible theoretical disadvantages of the big-M approach.
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Outer Approximation for MIQP-QP
Bilevel Problems




Mixed-Integer Bilevel Optimization

Algorithms

- Branch-and-bound/cut techniques
- Moore, Bard (1990)
- Xu, Wang (2014)
- Tahernejad, Ralphs, DeNegre (2016)
- Lozano, Smith (2017)
- Fischetti, Ljubi¢, Monaci, Sinnl (2017, 2018)
- Many problem-specific Benders-like approaches
- Grimm et al. (2019)
- Kleinert, Schmidt (2019)
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Mixed-Integer Bilevel Optimization

Algorithms

- Branch-and-bound/cut techniques
- Moore, Bard (1990)
- Xu, Wang (2014)
- Tahernejad, Ralphs, DeNegre (2016)
- Lozano, Smith (2017)
- Fischetti, Ljubi¢, Monaci, Sinnl (2017, 2018)
- Many problem-specific Benders-like approaches
- Grimm et al. (2019)
- Kleinert, Schmidt (2019)

Are there other classic approaches in MINLP?

Yes! Outer Approximation (Duran, Grossmann 1986; Fletcher, Leyffer 1994)



The MIQP-QP Bilevel Problem

1
nX1iyn qu(x,y) = X THux + ¢y x+ y TGy +dyy

st. Ax4+By >a
xi € ZN[x ,x'] foralliel:={1,...,]|}

/’/

Xi €R forallleR::{|/|+1 ooy Ny}

yEargmln{q(y) fy TGy +d'y:Cx+Dy>b, ye]R”V}



The MIQP-QP Bilevel Problem

1
nX1iyn qu(x,y) = X THux + ¢y x+ y TGy +dyy

st. Ax4+By >a
xi € ZN[x ,x'] foralliel:={1,...,]|}

/’/

Xi €R forallleR::{|/|+1 ooy Ny}

yEargmln{q(y) fy TGy +d'y:Cx+Dy>b, ye]R”V}

Assumptions
1. All upper-level integer variables x; are bounded

2. All linking variables are integer



Strong-Duality-Based Nonconvex Single-Level Reformulation

Dual of the lower level
_ 1
max G(xi;y,\) = —=y Gy — (Cx—b)" A
VA 2

st. Gy+d=D"A, A>0

qi(y) = g(xi; ¥, A) holds for all primal-dual feasible points

can be ensured by

c(xi,¥,A) == qu(y) = G(xi; v, A) =y Gy +dy —b A+ AT <0



Strong-Duality-Based Nonconvex Single-Level Reformulation

Dual of the lower level
_ 1
max G(xi;y,\) = —=y Gy — (Cx—b)" A
VA 2

st. Gy+d=D"A, A>0

qi(y) = g(xi; ¥, A) holds for all primal-dual feasible points

can be ensured by
(X1, ¥, A) = qu(y) =Gy, A) =y Gy +dy —b A+ ATCx <0
Equivalent MIQCQP

min  qu(X,Y)
X,V A

st. (x,y)eP
Gy+d=D") A>0
C(th:)‘) < 0



Convexification of the Single-Level MIQCQP

O,y A) = quy) — g(xiy, ) =y Gy +d'y —b A+ AT <0

20



Convexification of the Single-Level MIQCQP

O,y A) = quy) — g(xiy, ) =y Gy +d'y —b A+ AT <0

- All linking variables x; are bounded integers
- Standard linearization of products of continuous and integer variables (Zare et al. 2019)

20



Convexification of the Single-Level MIQCQP

O,y A) = quy) — g(xiy, ) =y Gy +d'y —b A+ AT <0

- All linking variables x; are bounded integers
- Standard linearization of products of continuous and integer variables (Zare et al. 2019)

Equivalent convex MIQCQP

min qu(x,y)
X,Y s A, W,S
st. (x,y)eP

Gy+d, =D"A\, A>0
AT Cx linearization

Strong duality: ¢(y, A,w) <0

Let's denote the feasible set by F

20



The Master Problem

min - qu(x,Y)
st. (x,y)eP
Gy+d =D"A, A>0 (MP)
linearization of AT Cx,
¢y, Aw)<0, [=0,...,p—1
Add ¢(7,y, A\, w) < 0 to the master problem after every iteration

7
Sy, A w):=2"Gy+d'y—bTy+> > 2w, —7TGy

jel r=1

21



The Master Problem

min - qu(x,Y)
st. (x,y)eP
Gy+d =D"A, A>0 (MP)
linearization of AT Cx,
¢y, Aw)<0, [=0,...,p—1
Add ¢(7,y, A\, w) < 0 to the master problem after every iteration

7
Sy, A w):=2"Gy+d'y—bTy+> > 2w, —7TGy

jel r=1

Lemma

For every iteration p > 1, F C MP C MP~" holds.

21



The Subproblem

- How to choose the y?

22



The Subproblem

- How to choose the y?

- Fixx, = x” and s = s” and solve the convex QCQP
min qU(XIp7XR7y)
XR,Y, AW
st (¢, x,Y) € P
Gy+d=D"X\, A>0

m
Wjr = S/Dr ZC,‘/)\,‘, jel, re [F/]
i=1

¢y, \,w) <0
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The Subproblem

- How to choose the y?

- Fixx, = x” and s = s” and solve the convex QCQP
min qU(XIp7XR7y)
XR,Y, AW
st (¢, xz,y) € P
Gy+d=D"A A>0
my
Wi = SﬁZCU)\,', jE ’, re [7/]

i=1

¢y, \,w) <0

Assumption

For every feasible subproblem (SP), the Abadie CQ holds at the solution (X3, 7", AP, WP).

22



Lemma

Let 22 = (xP, x5, yP, \°,wP, sP) be an optimal solution of the master problem (MP) and assume that
the subproblem (SP) is feasible and has the optimal solution (X3, P, \?, WP). Suppose further that
the ACQ holds and consider the new master problem that is obtained by adding the
outer-approximation cut T(y”;y, A\, w) < 0 to (MP). Then, for any feasible point of the form

Z = (X, Xr, ¥, A\, w, sP) of this problem the following holds:

qU(X(p7xR7y) Z qU(X/p7)_<§>)7p)'

23



Lemma

Let 22 = (xP, x5, yP, \°,wP, sP) be an optimal solution of the master problem (MP) and assume that
the subproblem (SP) is feasible and has the optimal solution (X3, P, \?, WP). Suppose further that
the ACQ holds and consider the new master problem that is obtained by adding the
outer-approximation cut T(y”;y, A\, w) < 0 to (MP). Then, for any feasible point of the form

Z = (X, Xr, ¥, A\, w, sP) of this problem the following holds:

qU(X(p7xR7y) Z qU(X/p7)_<§>)7p)'

Using the solution of (S”) does not explicitly cut off the integer solution x!

23



The Infeasible Case

- 7P solves (MP) — (y”, AP) is primal-dual feasible for the lower level with fixed x!
— lower level has an optimal solution (satisfying strong duality)
- Infeasibility of (SP): zP is feasible for (SP) without the strong-duality inequality

24
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- 7P solves (MP) — (y”, AP) is primal-dual feasible for the lower level with fixed x!
— lower level has an optimal solution (satisfying strong duality)
- Infeasibility of (SP): zP is feasible for (SP) without the strong-duality inequality

min  C(V, A\, w)
XRY s AW

st. (X, xg,y) € P
Gy+d=D"X, A>0 (FP)

my
Wy, = s, ZCUA,», jel, relr
=1
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The Infeasible Case

- 7P solves (MP) — (y”, AP) is primal-dual feasible for the lower level with fixed x!
— lower level has an optimal solution (satisfying strong duality)
- Infeasibility of (SP): zP is feasible for (SP) without the strong-duality inequality

min  C(V, A\, w)
XRY s AW

st. (X, xg,y) € P
Gy+d=D"X\, A>0 (FP)

my
Wy, = s, ZCUA,», jel, relr
=1

Lemma

Let zP be a solution of the master problem (MP), let the subproblem (SP) be infeasible, and let
(X5, 97, X\, W) be a solution of the feasibility problem (F). Then, ¢(y°, AP, wP) > 0 and every

z = (X, Xr, ¥, \,w,sP) € MP is infeasible for the constraint

"y, A w) <0.
2%



Multitree Outer Approximation for MIQP-QP Bilevel Problems

Initialize ¢ = —oco, ® = 0o, and p = 0.
while ¢ < ¢ do
Solve the master problem (MP).
if (MP) is infeasible then
Return “The bilevel problem is infeasible.
else
Let z° be the optimal solution of (MP) and set ¢ = qu (X", y").
end if
Solve the subproblem (SP), or the feasibility problem (FP) if (SP) is infeasible,
and obtain (X3, 7", \°, wP).
if (SP) is feasible and qu(x, X5, ¥") < ® then
Setz* = (xP, X0, ¥P, AP, WP, sP) and & = qu(x", X5, 7).
end if
Add the outer approximation cut ¢(¥”;y, A, w) < 0 to (MP).
Setp«p+1.
end while
Return z*. 25



Multitree Outer Approximation for MIQP-QP Bilevel Problems

Theorem

The multitree outer approximation algorithm terminates after a finite number of iterations at an
optimal solution of the original bilevel problem or with an indication that the problem is infeasible.

26



Multitree Outer Approximation for MIQP-QP Bilevel Problems

Theorem

The multitree outer approximation algorithm terminates after a finite number of iterations at an
optimal solution of the original bilevel problem or with an indication that the problem is infeasible.

Algorithmic Enhancements
- Additional outer-approximation cuts
- Early termination of the master problem

- Warmstarting the master problem

26



Exploiting the Bilevel Structure

Proposition

Let z° be a solution of the master problem (MP). Further, let g (x") be the optimal objective value of
the parametric lower-level problem for x, = xf and let (X7, ") be the solution of the QCQP

Qg!? qU(X)D7XR7y)
st. (X, x,y) € P, (x)
a(y) < ar (<)
Then, the following properties hold:

1. (xP,%5,7P) € F, e, itis a bilevel feasible point of the original bilevel problem
in the optimistic sense.

2. The solution (X7, ”) of the subproblem (SP) and the solution of Problem (%) coincide
in the sense that (xg,7") = (X2, 7).

27



Exploiting the Bilevel Structure

Proposition

Let z° be a solution of the master problem (MP). Further, let g (x") be the optimal objective value of
the parametric lower-level problem for x, = xf and let (X7, ") be the solution of the QCQP
Qg!? qU(X)D7XR7y)
st. (X, x,y) € P, (x)
ay) < ar(x).
Then, the following properties hold:

1. (xP,%5,7P) € F, e, itis a bilevel feasible point of the original bilevel problem
in the optimistic sense.
2. The solution (X7, ”) of the subproblem (SP) and the solution of Problem (%) coincide
in the sense that (xg,7") = (X2, 7).
Solving (SP) can be replaced with subsequently solving the lower level and the QCQP (x).

27



A Single-Tree Variant

- LP/NLP based B&B by Quesada, Grossmann (1992): avoid multiple search trees
- Implementations: FilMINT by Abhishek et al. (2010), Bonmin by Bonami et al. (2008)

28



A Single-Tree Variant

- LP/NLP based B&B by Quesada, Grossmann (1992): avoid multiple search trees
- Implementations: FilMINT by Abhishek et al. (2010), Bonmin by Bonami et al. (2008)

min  qu(x,y)

X,V s\ W,S
st. Ax+By>a, Cx+Dy>b
[<x<u
Gy+d=D"X, A>0
AT Cx linearization
E(V';y7)\,w) <0, [=0,...,p—1

28



Single-Tree Outer Approximation for MIQP-QP Bilevel Problems

Initialize ® = 0o, p =0, [ = x—, u = x*, and z* = none.
Initialize the set of open node problems O := {(NP((, u))}
while O # 0 do
Remove a QP (NP(l,u)) from © and solve it to obtain a solution zbY.
if (NP(L,u)) is infeasible or gy (x"Y, yb¥) > & then
Subtree can be pruned. Continue.
else if 7LV is integer feasible and gy (x"¥,y'v) < & then
Setx! = x Y and sP = sb¥ and solve the subproblem (SP) or the feasibility problem (FP) to obtain
(.77, 30, 7).
if (SP) is feasible and qu(x,X5,7P) < ® then
Setz* = (xf, X5, ¥P, AP, WP 5‘7) and = qu(x, X5, 7P).
end if
Re-add the problem: O <+ O U {(NP(,u))}.
Add the outer-approximation cut ¢(yP;y, A, w) < 0 to all problems in O.
Setp+p+1.
else
Branch on a fractionale i € 1, to obtain new bounds ', u" and 2, u?
Update O « O U {MP(", u"), MP(1%, u?)}.
end if
end while

Return z* or, if z* is none, return “The bilevel problem is infeasible”. 2



Software & Hardware Setup

- C++ implementation

- Gurobi 9.0 for solving all (MI1)(QC)QPs

- Increased NumericFocus (3)

- Tightened integer feasibility tolerance (10~7)

- Xeon E3-1240 v6 CPUs with 4 cores, 3.7 GHz, and 32 GB RAM
- Time limit of Th

- Implementation of the single-tree approach using callbacks and lazy constraints

- Test set from Kleinert, Schmidt (2019)
- Based on MIP-MIP instances from the literature
- Excluded instances that are too hard or too easy

- Filtered set of 423 instances

30



Test Set: Density vs. Size
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Analysis of the Multi-Tree Approach
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Analysis of the Single-Tree Approach
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Single-Tree vs. Multi-Tree
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Comparison with the Benchmarks
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An Open Problem: Continuous &
Nonconvex Lower Levels




Nonconvexities in the Lower Level

Upper-level problem
“min”  F(x,y)
X
st. G(x,y) >0, yeSKx)
Lower-level problem
min  f(x,y)
y

st. g(x,y) >0

36



Who can solve this problem?

Upper level
max F(X,¥) = X1 — 2Vn41 + Vo2 cx, X ERPwith 1< x;, < X, i € {1,2}
st (x1,%) € [, %] X [X, %] 0 U.pper' level isan LP -
with simple bound constraints
y € 5(x)

- Upper level has no coupling constraints

37



Who can solve this problem?

Upper level

max  F(X,Y) = X1 — 2Yn41 + Vn+2

XxER?
st (X17X2) € [)7(15)_(1] X [)7<27)_<2]

y € 5(x)
Lower level

max  f(X,y) = Y1 —¥n (X1 + X2 — Ynt1 — Yn+2)

yERfH»Z
st yw+yn:1
2
V<V, i€{l...,n—1}
yi>0, ie{l...,n}
YnME[O,Xq]

Yn+2 € [—XZ,XQ]

cx, X ERPwith 1< x;, < X, i € {1,2}
- Upper level is an LP

with simple bound constraints

- Upper level has no coupling constraints

- Feasible set of lower level is non-empty and

compact for all feasible leader decisions

- Slater's CQ is also satisfied for all feasible

leader decisions

- All constraints are linear except for some

convex-quadratic inequality constraints

- The coefficients/right-hand sides

are either 1or 1/2

- Bilinear objective function

37



Exact feasibility

Result #1

For every feasible leader’s decision
(x1,%2) € [x;,%1] % [X;, %], @ feasible follower’s

?Ra)iz FOGY) = Vi — Vi (1 + X2 = Vo1 — Ynia) decision y satisfies y, > 0.
y n

st )/w-H/n:1
2
V<Y, i€{l...,n—1}
yi>0, ie{l,....n}
Yni1 € [0, x1]

Ynio € [—Xz, Xz]
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Exact feasibility

max
yER”+2

st

FOGY) =y —yn (5 4+ X2 — Yo — Yni2)

1
yw+yn:§
V<Y, i€{l...,n—1}
yi>0, ie{l,....n}
Yni1 € [0, x1]

Vny2 € [—X2, X2]

Result #1

For every feasible leader’s decision

(x1,%2) € [x;,%1] % [X;, %], @ feasible follower’s
decision y satisfies y, > 0.

Result #2

For every feasible leader’s decision

(x1,%2) € [x4, X1] X [X;,X2], the set of optimal
solutions of the lower-level problem is a
singleton.
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Exact feasibility

max
yER”+2

st

FOGY) =y —yn (5 4+ X2 — Yo — Yni2)

1
yw+yn:§
V<Y, i€{l...,n—1}
yi>0, ie{l,....n}
Yni1 € [0, x1]

Vny2 € [—X2, X2]

Result #1

For every feasible leader’s decision

(x1,%2) € [x;,%1] % [X;, %], @ feasible follower’s
decision y satisfies y, > 0.

Result #2

For every feasible leader’s decision

(x1,%2) € [x4, X1] X [X;,X2], the set of optimal
solutions of the lower-level problem is a
singleton.

Result #3

The bilevel problem has a unique solution given
by x* = (x;,X2) with an optimal objective function
value of F* = x, + X,.
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e-feasibility

Definition

let0<eeR,f:R" =R, and g: R" — R™ be given. A point x € R" is called for the
problem maxyern {f (x): g(x) < 0} if gi(x) < 0 holds foralli e {1,...,m}\ N and if maxjey gi(x) < e
holds, where N C {1,...,m} denotes the index set of all nonlinear constraints.
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e-feasibility

Definition

let0<eeR,f:R" =R, and g: R" — R™ be given. A point x € R" is called for the
problem maxyern {f (x): g(x) < 0} if gi(x) < 0 holds foralli e {1,...,m}\ N and if maxjey gi(x) < e
holds, where N C {1,...,m} denotes the index set of all nonlinear constraints.

Result #4

Unless e < 2‘2%1, there is an e-feasible follower's decision y with y, = 0 for every feasible leader’s
decision (x1,%2) € [X;,X1] X [X,, Xa].
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e-feasibility

Definition

let0<eeR,f:R" =R, and g: R" — R™ be given. A point x € R" is called for the
problem maxyern {f (x): g(x) < 0} if gi(x) < 0 holds foralli e {1,...,m}\ N and if maxjey gi(x) < e
holds, where N C {1,...,m} denotes the index set of all nonlinear constraints.

Result #4

Unless e < 2‘2%1, there is an e-feasible follower's decision y with y, = 0 for every feasible leader’s
decision (x1,%2) € [X;,X1] X [X,, Xa].

Result #5

Unless e < 2*2M, the set of e-feasible follower’s solutions is not a singleton for every feasible
leader’s decision (x1,%2) € [x,X1] X [x,, X2].
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e-feasibility

Result #3 (revisited)

The bilevel problem has a unique solution given by x* = (x;, X2) with an optimal objective function
value of F* = x, + X,.
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e-feasibility

Result #3 (revisited)

The bilevel problem has a unique solution given by x* = (x;, X2) with an optimal objective function
value of F* = x, + X,.

Result #6

Lete > 22" and suppose that we allow for e-feasible follower's solutions.

Then, the of the bilevel problem is given by x; = (X1, X,) with an optimal
objective function value of Fj = X1 + X,.

The is given by x5 = (x;,X,) with an optimal objective function value
of Ffp = —X; — X,.
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e-feasibility

Result #3 (revisited)

The bilevel problem has a unique solution given by x* = (x;, X2) with an optimal objective function
value of F* = x, + X,.

Result #6

Lete > 22" and suppose that we allow for e-feasible follower's solutions.

Then, the of the bilevel problem is given by x; = (X1, X,) with an optimal
objective function value of Fj = X1 + X,.

The is given by x5 = (x;,X,) with an optimal objective function value
of Ffp = —X; — X,.

- By the way: n > log,(log,(1/¢%))

- Fore =1078, the problem gets unsolvable forn = 6
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Is this an impossibility result
for computationally solving bilevel problems
with continuous and nonconvex lower-level problems?
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Is this an impossibility result
for computationally solving bilevel problems
with continuous and nonconvex lower-level problems?
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