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Overview

What is Bilevel Optimization Anyway?

Outer Approximation for MIQP-QP Bilevel Problems

An Open Problem: Continuous & Nonconvex Lower Levels
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What is Bilevel Optimization Anyway?



Bilevel Optimization in a Nutshell

“Usual” optimization models

• a single decision maker

• one set of variables and constraints

• one objective function

Bilevel optimization

• two decision makers

• both interact in a hierarchical way
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Hierarchical Decision Making

Leader: Alice x
decides first

anticipates follower (Bob)

Follower: Bob y
decides second (of course)
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A Bit More Formal

Upper-level problem

“min
x
” F(x, y)

s.t. G(x, y) ≥ 0

, y ∈ S(x)

Lower-level problem

min
y

f (x, y)

s.t. g(x, y) ≥ 0

Different solution concepts: optimistic vs. pessimistic
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The Linear-Linear Case

min
x∈Rn,y∈Rm

c>x + d>y s.t. Ax + By ≥ a, y ∈ S(x)

S(x): set of optimal solutions of the x-parameterized linear problem

min
y

f>y s.t. Dy ≥ b− Cx

• Strongly NP-hard problem (Hansen, Jaumard, Savard 1992)

• Checking local optimality is NP-hard (Vicente et al. 1994)

• Mixed-integer linear bilevel problems are Σ2
p-hard (Lodi et al. 2014)

• Optimistic variant (Dempe 2002)
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How to solve these problems: The KKT reformulation

The lower-level problem is an LP:

min
y

f>y s.t. Dy ≥ b− Cx

The KKT conditions

Cx + Dy ≥ b

λ ≥ 0, D>λ = f

λ>(Cx + Dy − b) = 0

are both necessary and sufficient

Single-level reformulation

min
x,y,λ

c>x + d>y

s.t. Ax + By ≥ a, Cx + Dy ≥ b

λ ≥ 0, D>λ = f

λ>(Cx + Dy − b) = 0
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KKT Reformulation

min
x,y,λ

c>x + d>y

s.t. Ax + By ≥ a, Cx + Dy ≥ b

λ ≥ 0, D>λ = f

λ>(Cx + Dy − b) = 0

• All is nice …

• … except for the nasty KKT complementarity conditions

λ>(Cx + Dy − b) = 0
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How to deal with KKT complementarity conditions

λ>(Cx + Dy − b) = 0

That’s a disjunction
λi = 0 ∨ (Cx + Dy − b)i = 0, i ∈ {1, . . . , `}

Introduce a binary variable and some big-Ms …

Cx + Dy − b ≤ MP(1− u)

λ ≤ MDu

u ∈ {0, 1}`
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Mixed-Integer Linear Reformulation

min
x,y,λ,u

c>x + d>y

s.t. Ax + By ≥ a, Cx + Dy ≥ b

λ ≥ 0, D>λ = f

Cx + Dy − b ≤ MP(1− u)

λ ≤ MDu

u ∈ {0, 1}`

But how to choose the nasty big-Ms?
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Pitfall #1: Heuristics do not work!

12



Pitfall #2: It’s really hard!
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Remedy: It’s not even required anymore!
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Outer Approximation for MIQP-QP
Bilevel Problems



Mixed-Integer Bilevel Optimization

Algorithms

• Branch-and-bound/cut techniques
• Moore, Bard (1990)
• Xu, Wang (2014)
• Tahernejad, Ralphs, DeNegre (2016)
• Lozano, Smith (2017)
• Fischetti, Ljubić, Monaci, Sinnl (2017, 2018)

• Many problem-specific Benders-like approaches
• Grimm et al. (2019)
• Kleinert, Schmidt (2019)

Are there other classic approaches in MINLP?

Yes! Outer Approximation (Duran, Grossmann 1986; Fletcher, Leyffer 1994)
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The MIQP-QP Bilevel Problem

min
x,y

qu(x, y) =
1
2x

>Hux + c>u x +
1
2y

>Guy + d>u y

s.t. Ax + By ≥ a

xi ∈ Z ∩ [x−i , x
+
i ] for all i ∈ I := {1, . . . , |I|}

xi ∈ R for all i ∈ R := {|I|+ 1, . . . ,nx}

y ∈ argmin
ȳ

{
ql(ȳ) =

1
2 ȳ

>Glȳ + d>l ȳ : CxI + Dȳ ≥ b, ȳ ∈ Rny
}

Assumptions

1. All upper-level integer variables xI are bounded

2. All linking variables are integer
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Strong-Duality-Based Nonconvex Single-Level Reformulation

Dual of the lower level

max
y,λ

ḡ(xI; y, λ) = −
1
2y

>Gly − (CxI − b)>λ

s.t. Gly + dl = D>λ, λ ≥ 0

Weak duality ql(y) ≥ ḡ(xI; y, λ) holds for all primal-dual feasible points

Strong duality can be ensured by

c(xI, y, λ) := ql(y)− ḡ(xI; y, λ) = y>Gly + d>l y − b>λ+ λ>CxI ≤ 0

Equivalent MIQCQP

min
x,y,λ

qu(x, y)

s.t. (x, y) ∈ P

Gly + dl = D>λ, λ ≥ 0

c(xI, y, λ) ≤ 0
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Convexification of the Single-Level MIQCQP

c(xI, y, λ) := ql(y)− ḡ(xI; y, λ) = y>Gly + d>l y − b>λ+ λ>CxI ≤ 0

• All linking variables xI are bounded integers
• Standard linearization of products of continuous and integer variables (Zare et al. 2019)

Equivalent convex MIQCQP

min
x,y,λ,w,s

qu(x, y)

s.t. (x, y) ∈ P

Gly + dl = D>λ, λ ≥ 0

λ>CxI linearization

Strong duality: ĉ(y, λ,w) ≤ 0

Let’s denote the feasible set by F
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Let’s denote the feasible set by F

20



The Master Problem

min
x,y,λ,w,s

qu(x, y)

s.t. (x, y) ∈ P

Gly + dl = D>λ, λ ≥ 0

linearization of λ>CxI
c̄(ȳl; y, λ,w) ≤ 0, l = 0, . . . , p− 1

(Mp)

Add linear outer approximation cut c̄(ȳl; y, λ,w) ≤ 0 to the master problem after every iteration

c̄(ȳ; y, λ,w) := 2ȳ>Gly + d>l y − b>y +
∑
j∈I

r̄j∑
r=1

2r−1wjr − ȳ>Glȳ

Lemma

For every iteration p ≥ 1, F ⊆Mp ⊆Mp−1 holds.
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The Subproblem

• How to choose the linearization points ȳ?

• Fix xI = xpI and s = sp and solve the convex QCQP

min
xR,y,λ,w

qu(xpI , xR, y)

s.t. (xpI , xR, y) ∈ P

Gly + dl = D>λ, λ ≥ 0

wjr = spjr
ml∑
i=1

cijλi, j ∈ I, r ∈ [̄rj]

ĉ(y, λ,w) ≤ 0

(Sp)

Assumption

For every feasible subproblem (Sp), the Abadie CQ holds at the solution (x̄pR, ȳ
p, λ̄p, w̄p).

22
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Why?

Lemma

Let zp = (xpI , x
p
R, y

p, λp,wp, sp) be an optimal solution of the master problem (Mp) and assume that
the subproblem (Sp) is feasible and has the optimal solution (x̄pR, ȳ

p, λ̄p, w̄p). Suppose further that
the ACQ holds and consider the new master problem that is obtained by adding the
outer-approximation cut c̄(ȳp; y, λ,w) ≤ 0 to (Mp). Then, for any feasible point of the form
z = (xpI , xR, y, λ,w, s

p) of this problem the following holds:

qu(xpI , xR, y) ≥ qu(x
p
I , x̄

p
R, ȳ

p).

Difference to Fletcher, Leyffer (1994):
Using the solution of (Sp) does not explicitly cut off the integer solution xpI
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The Infeasible Case

• zp solves (Mp)→ (yp, λp) is primal-dual feasible for the lower level with fixed xpI
→ lower level has an optimal solution (satisfying strong duality)

• Infeasibility of (Sp): zp is feasible for (Sp) without the strong-duality inequality

min
xR,y,λ,w

ĉ(y, λ,w)

s.t. (xpI , xR, y) ∈ P

Gly + dl = D>λ, λ ≥ 0

wjr = spjr
ml∑
i=1

cijλi, j ∈ I, r ∈ [̄rj]

(Fp)

Lemma

Let zp be a solution of the master problem (Mp), let the subproblem (Sp) be infeasible, and let
(x̄pR, ȳ

p, λ̄, w̄) be a solution of the feasibility problem (Fp). Then, ĉ(ȳp, λ̄p, w̄p) > 0 and every
z = (xpI , xR, y, λ,w, s

p) ∈Mp is infeasible for the constraint

c̄(ȳp; y, λ,w) ≤ 0.

24
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Multitree Outer Approximation for MIQP-QP Bilevel Problems

Initialize φ = −∞, Φ =∞, and p = 0.
while φ < Φ do
Solve the master problem (Mp).
if (Mp) is infeasible then
Return “The bilevel problem is infeasible.”

else
Let zp be the optimal solution of (Mp) and set φ = qu(xp, yp).

end if
Solve the subproblem (Sp), or the feasibility problem (Fp) if (Sp) is infeasible,
and obtain (x̄pR, ȳ

p, λ̄p, w̄p).
if (Sp) is feasible and qu(xpI , x̄

p
R, ȳ

p) < Φ then
Set z∗ = (xpI , x̄

p
R, ȳ

p, λ̄p, w̄p, sp) and Φ = qu(xpI , x̄
p
R, ȳ

p).
end if
Add the outer approximation cut c̄(ȳp; y, λ,w) ≤ 0 to (Mp).
Set p← p+ 1.

end while
Return z∗. 25



Multitree Outer Approximation for MIQP-QP Bilevel Problems

Theorem

The multitree outer approximation algorithm terminates after a finite number of iterations at an
optimal solution of the original bilevel problem or with an indication that the problem is infeasible.

Algorithmic Enhancements

• Additional outer-approximation cuts

• Early termination of the master problem

• Warmstarting the master problem

26
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Exploiting the Bilevel Structure

Proposition

Let zp be a solution of the master problem (Mp). Further, let q∗l (x
p
I ) be the optimal objective value of

the parametric lower-level problem for xI = xpI and let (x̃
p
R, ỹ

p) be the solution of the QCQP

min
xR,y

qu(xpI , xR, y)

s.t. (xpI , xR, y) ∈ P,

ql(y) ≤ q∗l (xpI ).

(?)

Then, the following properties hold:

1. (xpI , x̃
p
R, ỹ

p) ∈ F , i.e., it is a bilevel feasible point of the original bilevel problem
in the optimistic sense.

2. The solution (x̃pR, ỹ
p) of the subproblem (Sp) and the solution of Problem (?) coincide

in the sense that (x̄pR, ȳ
p) = (x̃pR, ỹ

p).

Solving (Sp) can be replaced with subsequently solving the lower level and the QCQP (?).
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p) of the subproblem (Sp) and the solution of Problem (?) coincide

in the sense that (x̄pR, ȳ
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A Single-Tree Variant

• LP/NLP based B&B by Quesada, Grossmann (1992): avoid multiple search trees

• Implementations: FilMINT by Abhishek et al. (2010), Bonmin by Bonami et al. (2008)

min
x,y,λ,w,s

qu(x, y)

s.t. Ax + By ≥ a, CxI + Dy ≥ b

l ≤ xI ≤ u

Gly + dl = D>λ, λ ≥ 0

λ>CxI linearization

c̄(ȳl; y, λ,w) ≤ 0, l = 0, . . . , p− 1

(Np(l,u))
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Single-Tree Outer Approximation for MIQP-QP Bilevel Problems

Initialize Φ =∞, p = 0, l = x− , u = x+ , and z∗ = none.
Initialize the set of open node problems O := {(Np(l, u))}
while O 6= ∅ do
Remove a QP (Np(l, u)) from O and solve it to obtain a solution zl,u .
if (Np(l, u)) is infeasible or qu(xl,u, yl,u) ≥ Φ then
Subtree can be pruned. Continue.

else if zl,u is integer feasible and qu(xl,u, yl,u) < Φ then
Set xpI = xl,uI and sp = sl,u and solve the subproblem (Sp) or the feasibility problem (Fp) to obtain
(x̄pR, ȳ

p, λ̄p, w̄p).
if (Sp) is feasible and qu(xpI , x̄

p
R, ȳ

p) < Φ then
Set z∗ = (xpI , x̄

p
R, ȳ

p, λ̄p, w̄p, sp) and Φ = qu(xpI , x̄
p
R, ȳ

p).
end if
Re-add the problem: O ← O ∪ {(Np(l, u))}.
Add the outer-approximation cut c̄(ȳp; y, λ,w) ≤ 0 to all problems in O.
Set p← p+ 1.

else
Branch on a fractional xpi , i ∈ I, to obtain new bounds l

1, u1 and l2, u2 .
Update O ← O ∪ {Mp(l1, u1),Mp(l2, u2)}.

end if
end while
Return z∗ or, if z∗ is none, return “The bilevel problem is infeasible”. 29



Software & Hardware Setup

• C++ implementation

• Gurobi 9.0.1 for solving all (MI)(QC)QPs

• Increased NumericFocus (3)

• Tightened integer feasibility tolerance (10−9)

• Xeon E3-1240 v6 CPUs with 4 cores, 3.7 GHz, and 32GB RAM

• Time limit of 1 h

• Implementation of the single-tree approach using callbacks and lazy constraints

• Test set from Kleinert, Schmidt (2019)

• Based on MIP-MIP instances from the literature

• Excluded instances that are too hard or too easy

• Filtered set of 423 instances
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Test Set: Density vs. Size
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Analysis of the Multi-Tree Approach

1 10
0.00

0.25

0.50

0.75

1.00

MT
MT-K
MT-K-F
MT-K-F-W

32



Analysis of the Single-Tree Approach
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Single-Tree vs. Multi-Tree
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Comparison with the Benchmarks
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An Open Problem: Continuous &
Nonconvex Lower Levels



Nonconvexities in the Lower Level

Upper-level problem

“min
x
” F(x, y)

s.t. G(x, y) ≥ 0, y ∈ S(x)

Lower-level problem

min
y

f (x, y)

s.t. g(x, y) ≥ 0

36



Who can solve this problem?

Upper level

max
x∈R2

F(x, y) = x1 − 2yn+1 + yn+2

s.t. (x1, x2) ∈ [x1, x̄1]× [x2, x̄2]

y ∈ S(x)

Lower level

max
y∈Rn+2

f (x, y) = y1 − yn (x1 + x2 − yn+1 − yn+2)

s.t. y1 + yn =
1
2

y2i ≤ yi+1, i ∈ {1, . . . ,n− 1}

yi ≥ 0, i ∈ {1, . . . ,n}

yn+1 ∈ [0, x1]

yn+2 ∈ [−x2, x2]

• x, x̄ ∈ R2 with 1 ≤ xi < x̄i, i ∈ {1, 2}

• Upper level is an LP
with simple bound constraints

• Upper level has no coupling constraints

• Feasible set of lower level is non-empty and
compact for all feasible leader decisions

• Slater’s CQ is also satisfied for all feasible
leader decisions

• All constraints are linear except for some
convex-quadratic inequality constraints

• The coefficients/right-hand sides
are either 1 or 1/2

• Bilinear objective function
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Exact feasibility

max
y∈Rn+2

f (x, y) = y1 − yn (x1 + x2 − yn+1 − yn+2)

s.t. y1 + yn =
1
2

y2i ≤ yi+1, i ∈ {1, . . . ,n− 1}

yi ≥ 0, i ∈ {1, . . . ,n}

yn+1 ∈ [0, x1]

yn+2 ∈ [−x2, x2]

Result #1
For every feasible leader’s decision
(x1, x2) ∈ [x1, x̄1]× [x2, x̄2], a feasible follower’s
decision y satisfies yn > 0.

Result #2
For every feasible leader’s decision
(x1, x2) ∈ [x1, x̄1]× [x2, x̄2], the set of optimal
solutions of the lower-level problem is a
singleton.

Result #3
The bilevel problem has a unique solution given
by x∗ = (x1, x̄2) with an optimal objective function
value of F∗ = x1 + x̄2.
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ε-feasibility

Definition

Let 0 < ε ∈ R, f : Rn → R, and g : Rn → Rm be given. A point x ∈ Rn is called ε-feasible for the
problem maxx∈Rn{f (x) : g(x) ≤ 0} if gi(x) ≤ 0 holds for all i ∈ {1, . . . ,m} \ N and if maxi∈N gi(x) ≤ ε

holds, where N ⊆ {1, . . . ,m} denotes the index set of all nonlinear constraints.

Result #4

Unless ε < 2−2n−1
, there is an ε-feasible follower’s decision y with yn = 0 for every feasible leader’s

decision (x1, x2) ∈ [x1, x̄1]× [x2, x̄2].

Result #5

Unless ε < 2−2n−1
, the set of ε-feasible follower’s solutions is not a singleton for every feasible

leader’s decision (x1, x2) ∈ [x1, x̄1]× [x2, x̄2].
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ε-feasibility

Result #3 (revisited)
The bilevel problem has a unique solution given by x∗ = (x1, x̄2) with an optimal objective function
value of F∗ = x1 + x̄2.

Result #6

Let ε ≥ 2−2n−1
and suppose that we allow for ε-feasible follower’s solutions.

Then, the optimistic optimal solution of the bilevel problem is given by x∗o = (x̄1, x̄2) with an optimal
objective function value of F∗o = x̄1 + x̄2.

The pessimistic optimal solution is given by x∗p = (x1, x2) with an optimal objective function value
of F∗p = −x1 − x2.

• By the way: n ≥ log2(log2(1/ε2))

• For ε = 10−8, the problem gets unsolvable for n = 6
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Well … and now?

Is this an impossibility result
for computationally solving bilevel problems

with continuous and nonconvex lower-level problems?
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